Abstract

We report on traveling-wave quadrature squeezing generated in an integrated optical circuit fabricated with periodically-poled lithium niobate waveguides. The device integrates a second-harmonic-generation stage, waveguide couplers, spatial mode filters, and a degenerate-optical-parametric-amplification stage. The integration promises to create a low power, compact, and simple source of wideband squeezed light. -1 dB of squeezing is directly measured using 20 ps pulses with peak powers near 6W.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Furusawa, ?Amplitude squeezing of a semiconductor laser with light injection,? Opt. Lett. 21, 2014?2016 (1996).
    [CrossRef] [PubMed]
  2. K. Schneider, M. Lang, J. Mlynek, and S. Schiller, ?Generation of strongly squeezed continuouswave light at 1064nm,? Opt. Express 2, 59?64(1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-3-59">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-2-3-59</a>
    [CrossRef] [PubMed]
  3. Daniel Gottesman and John Preskill, ?Secure quantum key distribution using squeezed states,? quant-ph/0008046 2, 1?19 (2000).
  4. C. Kim and P. Kumar, ?Quadrature-squeezed light detection using a self-generated matched local oscillator?, Phys. Rev. Lett. 73, 1605-1608 (1994).
    [CrossRef] [PubMed]
  5. C. X. Yu, H. A. Haus, and E. P. Ippen, ?Soliton squeezing at the gigahertz rate in a Sagnac loop,? Opt. Lett. 26, 669?671 (2001).
    [CrossRef]
  6. C. H. Kim, R-D Li, and P. Kumar, ?Deamplification response of a traveling-wave phase-sensitive optical parametric amplifer,? Opt. Lett. 19, 132-134(1994 ).
    [CrossRef] [PubMed]
  7. A. La Porta and R. E. Slusher, ?Squeezing limits at high parametric gains,? Phys. Rev. A 44, 2013?2022 (1991).
    [CrossRef] [PubMed]
  8. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, ?Squeezing in a quasi-phase-matched LiNbO3 waveguide,? Opt. Lett. 20, 1649-1651 (1995).
    [CrossRef] [PubMed]
  9. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, ?1.5-?m-band wavelength conversion based on di.erence-frequency generation in LiNbO3 waveguides with integrated coupling structures,? Opt. Lett. 23 1004-1006 (1998).
    [CrossRef]
  10. M. Yamada, N. Nada, M. Saitoh, and K. Wantanabe, ?First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,? Appl. Phys. Lett. 62, 435?436 (1993).
    [CrossRef]
  11. M. L. Bortz and M. M. Fejer, ?Annealed proton-exchanged LiNbO3 waveguides,? Opt. Lett. 16, 1844?1846 (1991).
    [CrossRef] [PubMed]
  12. D. K. Serkland, P. Kumar, M. A. Arbore, and M. M. Fejer, ?Amplitude squeezing by means of quasi-phase-matched second-harmonic generation in a lithium niobate waveguide,? Opt. Lett. 22, 1497-1499 (1997).
    [CrossRef]
  13. M. E. Anderson, D. F. McAlister, and M. G. Raymer, ?Pulsed squeezed-light generation in ?(2) nonlinear waveguides,? J. Opt. Soc. Am. B 14, 3180?3190 (1997).
    [CrossRef]
  14. K. R. Parameswaran, M. Fujimura, R. K. Route, J. R. Kurz, R. V. Roussev, and M. M. Fejer, ?Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN,? LEOS 2001, paper ThL3.

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Wantanabe, ?First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,? Appl. Phys. Lett. 62, 435?436 (1993).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett

D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, ?Squeezing in a quasi-phase-matched LiNbO3 waveguide,? Opt. Lett. 20, 1649-1651 (1995).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev.

A. La Porta and R. E. Slusher, ?Squeezing limits at high parametric gains,? Phys. Rev. A 44, 2013?2022 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. Kim and P. Kumar, ?Quadrature-squeezed light detection using a self-generated matched local oscillator?, Phys. Rev. Lett. 73, 1605-1608 (1994).
[CrossRef] [PubMed]

Other

Daniel Gottesman and John Preskill, ?Secure quantum key distribution using squeezed states,? quant-ph/0008046 2, 1?19 (2000).

K. R. Parameswaran, M. Fujimura, R. K. Route, J. R. Kurz, R. V. Roussev, and M. M. Fejer, ?Highly efficient SHG in buried waveguides formed using annealed and reverse proton exchange in PPLN,? LEOS 2001, paper ThL3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Left: A schematic of the integrated squeezing circuit. Right: Phase-matching curves for the SHG (dotted curve) and DOPA (solid curve) sections. The oscillations on the curves are due to reflections from the uncoated waveguide end-faces.

Fig. 2.
Fig. 2.

A schematic of the squeezing experiment. The amplified color-center-laser beams can be made to travel to the LO guide, the center guide, or the signal guide in any ratio of powers by adjusting the waveplates (λ/2). The dichroic mirrors (DM) reflect almost all of the harmonic and a small amount of the fundamental, which are used for monitoring purposes. OF, optical filter; PZT, piezo-electric transducer.

Fig. 3.
Fig. 3.

Noise measurements of several types are shown here including (from left to right) the quadrature-noise measurements as a PZT varies the phase between the LO and the SV, the LO SNL, the LO total-noise level (about 5 dB of excess noise), and the pump-leakage shot- and excess-noise levels.

Metrics