Abstract

The use of 1 nanojoule near infrared 80 MHz femtosecond laser pulses for highly precise intratissue processing, in particular for intraocular refractive surgery, was evaluated. Destructive optical breakdown at TW/cm2 light intensities in a subfemtoliter intrastromal volume was obtained by diffraction-limited focussing with an 40x objective (N.A. 1.3) and beam scanning 50 to 140 μm below the epithelial surface. Using the same system at GW/cm2 intensities two-photon excited autofluorescence imaging was used to determine the target of interest and to visualize intraocular laser effects. Histological examination of laser-exposed porcine eyes reveal a minimum cut size below 1 μm without destructive effects to surrounding tissues.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optically coupled technique for photorefractive surgery of the cornea

J. Taboada and R. H. Poirier
Opt. Lett. 15(9) 458-460 (1990)

Mini-invasive corneal surgery and imaging with femtosecond lasers

Meng Han, Günter Giese, Leander Zickler, Hui Sun, and Josef F. Bille
Opt. Express 12(18) 4275-4281 (2004)

In vivo nanosecond laser axotomy: cavitation dynamics and vesicle transport

G. Nageswara Rao, Sucheta S. Kulkarni, Sandhya P. Koushika, and Kaustubh R. Rau
Opt. Express 16(13) 9884-9894 (2008)

References

  • View by:
  • |
  • |
  • |

  1. I.G. Pallikaris and D.S. Saiganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia, “ J. Refract. Surg. 10, 498–510 (1994).
  2. M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).
  3. D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
    [Crossref] [PubMed]
  4. R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
    [PubMed]
  5. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
    [Crossref]
  6. R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).
  7. M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
    [PubMed]
  8. H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
    [Crossref] [PubMed]
  9. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
    [Crossref]
  10. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,”IEEE J. Quantum Electron. 35, 1156–1167 (1999).
    [Crossref]
  11. T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
    [Crossref] [PubMed]
  12. T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
    [Crossref]
  13. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,“ Opt. Lett. 26, 819–821 (2001).
    [Crossref]
  14. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [Crossref] [PubMed]

2001 (1)

2000 (3)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref] [PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

1999 (3)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,”IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

1998 (1)

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

1997 (2)

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
[Crossref] [PubMed]

1996 (2)

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

1994 (1)

I.G. Pallikaris and D.S. Saiganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia, “ J. Refract. Surg. 10, 498–510 (1994).

1989 (1)

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Bille, J.F.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

Birngruber, R.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Bor, Z.

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

Brown, W.E.

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

Coupland, S.

H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
[Crossref] [PubMed]

Dobei, E.T.

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Drommer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Du, D.

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Elner, V.M.

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Ertmer, W.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Ferensowisc, M.

H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
[Crossref] [PubMed]

Fritzsche, W.

Gimbel, H.

H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
[Crossref] [PubMed]

Heisterkamp, A.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Hetzel, U.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Horvath, C.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

Ito, M.

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Juhasz, T.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).

Kastis, G.A.

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

König, K.

Krueger, R.R.

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Kurtz, R.M.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Liu, H.H.

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

Liu, X.

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Loesel, F.H.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

Lubatschowski, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Maatz, G.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Malhan, S.

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Mourou, G.

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

Mourou, G.A.

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Mrochen, M.

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).

Nahen, K.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Noack, J.

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,”IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

Pallikaris, I.G.

I.G. Pallikaris and D.S. Saiganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia, “ J. Refract. Surg. 10, 498–510 (1994).

Puliafito, C.A.

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Quantock, A.J.

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Reidy, W.T.

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Riemann, I.

Rockwell, B.A.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Saiganos, D.S.

I.G. Pallikaris and D.S. Saiganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia, “ J. Refract. Surg. 10, 498–510 (1994).

Schanzlin, D.J.

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Seiler, T.

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).

Squier, J.A.

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

Stern, D.

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Suarez, C.

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

Theisen, D.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Thomas, R.J.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Vogel, A.

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,”IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

Welling, H.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

Appl. Phys. B (1)

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R.J. Thomas, and B.A. Rockwell, “Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,“ Appl. Phys. B 68, 271–280 (1999).
[Crossref]

Arch. Ophthalmol. (1)

D. Stern, C.A. Puliafito, E.T. Dobei, and W.T. Reidy, “Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,” Arch. Ophthalmol. 107, 587–592 (1989).
[Crossref] [PubMed]

Graefe’s Arch. Clin. Exp. Ophthalmol. (1)

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling, and W. Ertmer, “Application of ultrashort laser pulses for intrastromal refractive surgery,“ Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 33–39 (2000).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,”IEEE J. Quantum Electron. 35, 1156–1167 (1999).
[Crossref]

T. Juhasz, F.H. Loesel, R.M. Kurtz, C. Horvath, J.F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5, 902–909 (1999).
[Crossref]

Int. Ophthalmol. Clin. (1)

H. Gimbel, S. Coupland, and M. Ferensowisc,“Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,” Int. Ophthalmol. Clin. 37, 95–102 (1997).
[Crossref] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[Crossref] [PubMed]

J. Refrac. Surg. (1)

M. Mrochen, M. Kaemmerer, and T. Seiler, “Wavefront-guided laser in situ keratomileusis: early results in three eyes,“ J. Refrac. Surg. 16, 116–121 (2000).

J. Refract. Surg. (4)

I.G. Pallikaris and D.S. Saiganos, “Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia, “ J. Refract. Surg. 10, 498–510 (1994).

R.M. Kurtz, C. Horvath, H.H. Liu, R.R. Krueger, and T. Juhasz, “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14, 541–548 (1998).
[PubMed]

R.M. Kurtz, X. Liu, V.M. Elner, J.A. Squier, D. Du, and G.A. Mourou, “Photodisruption in the human cornea as a function of laser pulse width,” J. Refract. Surg. 13, 653–658 (1997).

M. Ito, A.J. Quantock, S. Malhan, D.J. Schanzlin, and R.R. Krueger, “Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,” J. Refract. Surg. 12, 721–728 (1996).
[PubMed]

Lasers Surg. Med. (1)

T. Juhasz, G.A. Kastis, C. Suarez, Z. Bor, and W.E. Brown, “Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,” Lasers Surg. Med. 19, 23–31(1996).
[Crossref] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Optical maging of intraocular tissue structures at different depths by two-photon excited autofluorescence. A: 3D fluorescence imaging enables discrimination between epithelial layer, Bowman’s layer and corneal stroma. Individual cells with fluorescent cytoplasm (c) and non-fluorescent nuclei (n) are visible as shown in the small image in the corner which reflects a 4x magnified region of the autofluorescence image of the epithelium. B: After laser treatment, an intratissue highly fluorescent structure along the cut with submicron lateral size is formed.

Fig. 2.
Fig. 2.

Histological examination of a HE-stained cryosection after laser exposure by 488 nm laser scanning microscopy reveal precise <1 μm line cuts. No visible signs of collateral damage were found. The lower left image demonstrates an intratissue cut through a single nuclei at 90 μm tissue depth.

Metrics