Abstract

The use of 1 nanojoule near infrared 80 MHz femtosecond laser pulses for highly precise intratissue processing, in particular for intraocular refractive surgery, was evaluated. Destructive optical breakdown at TW/cm2 light intensities in a subfemtoliter intrastromal volume was obtained by diffraction-limited focussing with an 40x objective (N.A. 1.3) and beam scanning 50 to 140 μm below the epithelial surface. Using the same system at GW/cm2 intensities two-photon excited autofluorescence imaging was used to determine the target of interest and to visualize intraocular laser effects. Histological examination of laser-exposed porcine eyes reveal a minimum cut size below 1 μm without destructive effects to surrounding tissues.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. I. G. Pallikaris and D. S. Saiganos, ?Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia," J. Refract. Surg. 10, 498-510 (1994).
  2. M. Mrochen, M. Kaemmerer and T. Seiler, ?Wavefront-guided laser in situ keratomileusis: early results in three eyes,? J. Refrac. Surg. 16, 116-121 (2000).
  3. D. Stern, C. A. Puliafito, E. T. Dobei andW. T. Reidy, ?Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,? Arch. Ophthalmol. 107, 587-592 (1989).
    [CrossRef] [PubMed]
  4. R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger and T. Juhasz, ?Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,? J. Refract. Surg. 14, 541-548 (1998).
    [PubMed]
  5. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas and B. A. Rockwell, ?Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,? Appl. Phys. B 68, 271-280 (1999).
    [CrossRef]
  6. R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du and G. A. Mourou, ?Photodisruption in the human cornea as a function of laser pulse width,? J. Refract. Surg. 13, 653-658 (1997).
  7. M. Ito, A. J. Quantock, S. Malhan, D. J. Schanzlin and R. R. Krueger, ?Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,? J. Refract. Surg. 12, 721-728 (1996).
    [PubMed]
  8. H. Gimbel, S. Coupland and M. Ferensowisc, ?Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,? Int. Ophthalmol. Clin. 37, 95-102 (1997).
    [CrossRef] [PubMed]
  9. H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery,? Graefe?s Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
    [CrossRef]
  10. J. Noack and A. Vogel, ?Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,? IEEE J. Quantum Electron. 35, 1156-1167 (1999).
    [CrossRef]
  11. T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor and W.E. Brown, ?Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,? Lasers Surg. Med. 19, 23-31(1996).
    [CrossRef] [PubMed]
  12. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille and G. Mourou, ?Corneal refractive surgery with femtosecond lasers,? IEEE J. Quantum Electron. 5, 902-909 (1999).
    [CrossRef]
  13. K. K?nig, I. Riemann and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,? Opt. Lett. 26, 819-821 (2001).
    [CrossRef]
  14. K. K?nig, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
    [CrossRef] [PubMed]

Appl. Phys. B

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas and B. A. Rockwell, ?Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,? Appl. Phys. B 68, 271-280 (1999).
[CrossRef]

Arch. Clin. Exp. Ophthalmol.

H. Lubatschowski, G. Maatz, A. Heisterkamp, U. Hetzel, W. Drommer, H. Welling and W. Ertmer, "Application of ultrashort laser pulses for intrastromal refractive surgery,? Graefe?s Arch. Clin. Exp. Ophthalmol. 238, 33-39 (2000).
[CrossRef]

Arch. Ophthalmol.

D. Stern, C. A. Puliafito, E. T. Dobei andW. T. Reidy, ?Corneal ablation by nanosecond, picosecond and femtosecond laser pulses at 532 nm and 625 nm,? Arch. Ophthalmol. 107, 587-592 (1989).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. Noack and A. Vogel, ?Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy densities,? IEEE J. Quantum Electron. 35, 1156-1167 (1999).
[CrossRef]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille and G. Mourou, ?Corneal refractive surgery with femtosecond lasers,? IEEE J. Quantum Electron. 5, 902-909 (1999).
[CrossRef]

Int. Ophthalmol. Clin.

H. Gimbel, S. Coupland and M. Ferensowisc, ?Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser,? Int. Ophthalmol. Clin. 37, 95-102 (1997).
[CrossRef] [PubMed]

J. Microsc.

K. K?nig, "Multiphoton microscopy in life sciences," J. Microsc. 200, 83-104 (2000).
[CrossRef] [PubMed]

J. Refrac. Surg.

M. Mrochen, M. Kaemmerer and T. Seiler, ?Wavefront-guided laser in situ keratomileusis: early results in three eyes,? J. Refrac. Surg. 16, 116-121 (2000).

J. Refract. Surg.

I. G. Pallikaris and D. S. Saiganos, ?Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia," J. Refract. Surg. 10, 498-510 (1994).

R. M. Kurtz, X. Liu, V. M. Elner, J. A. Squier, D. Du and G. A. Mourou, ?Photodisruption in the human cornea as a function of laser pulse width,? J. Refract. Surg. 13, 653-658 (1997).

M. Ito, A. J. Quantock, S. Malhan, D. J. Schanzlin and R. R. Krueger, ?Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser,? J. Refract. Surg. 12, 721-728 (1996).
[PubMed]

J. Refract. Surg. 14

R. M. Kurtz, C. Horvath, H. H. Liu, R. R. Krueger and T. Juhasz, ?Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,? J. Refract. Surg. 14, 541-548 (1998).
[PubMed]

Lasers Surg. Med.

T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor and W.E. Brown, ?Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water,? Lasers Surg. Med. 19, 23-31(1996).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Optical maging of intraocular tissue structures at different depths by two-photon excited autofluorescence. A: 3D fluorescence imaging enables discrimination between epithelial layer, Bowman’s layer and corneal stroma. Individual cells with fluorescent cytoplasm (c) and non-fluorescent nuclei (n) are visible as shown in the small image in the corner which reflects a 4x magnified region of the autofluorescence image of the epithelium. B: After laser treatment, an intratissue highly fluorescent structure along the cut with submicron lateral size is formed.

Fig. 2.
Fig. 2.

Histological examination of a HE-stained cryosection after laser exposure by 488 nm laser scanning microscopy reveal precise <1 μm line cuts. No visible signs of collateral damage were found. The lower left image demonstrates an intratissue cut through a single nuclei at 90 μm tissue depth.

Metrics