Abstract

We prove formal identity of the dispersed states and the two-photon coherent states. As the last fall in the class of squeezed states and are non-classical, so are the dispersed states. A state which exhibits squeezing and/or non-classicality should not be called coherent as suggested in the Comment.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. M. Fini, ?Comment on: Quantum optics with particles of light,? Opt. Express 10, 155 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-155"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-155</a>
    [CrossRef] [PubMed]
  2. V. V. Kozlov, ?Quantum optics with particles of light,? Opt. Express 8, 688-693 (2001). <a href="http://www.opticsexpress.org/oearchive/source/34146.htm">http://www.opticsexpress.org/oearchive/source/34146.htm</a>
    [CrossRef] [PubMed]
  3. H. P. Yuen, ?Two-photon coherent states of the radiation field,? Phys. Rev. A 13, 2226-2243 (1976).
    [CrossRef]
  4. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995).
  5. V. V. Kozlov, ?Squeezing light in a linear dispersive dielectric,? in Conference Proceedings, ICSSUR 2001, Boston, Massachusetts U.S. <a href="http://www.bu.edu/qil/icssur2001.html">http://www.bu.edu/qil/icssur2001.html</a>
  6. V. V. Kozlov, ?A quantum-mechanical calculation of frequency and timing jitters for optical pulses in dispersive fibers with losses,? Opt. Lett. accepted (2002).
    [CrossRef]

ICSSUR 2001 (1)

V. V. Kozlov, ?Squeezing light in a linear dispersive dielectric,? in Conference Proceedings, ICSSUR 2001, Boston, Massachusetts U.S. <a href="http://www.bu.edu/qil/icssur2001.html">http://www.bu.edu/qil/icssur2001.html</a>

Opt. Express (2)

Opt. Lett. (1)

V. V. Kozlov, ?A quantum-mechanical calculation of frequency and timing jitters for optical pulses in dispersive fibers with losses,? Opt. Lett. accepted (2002).
[CrossRef]

Phys. Rev. A (1)

H. P. Yuen, ?Two-photon coherent states of the radiation field,? Phys. Rev. A 13, 2226-2243 (1976).
[CrossRef]

Other (1)

L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ̂ ( z ) = P ̂ 0 and X ̂ ( z ) = X ̂ 0 + ( k z n 0 ) P ̂ 0 .
y ̂ 1 2 ( 1 t c X ̂ + i t c ħ P ̂ ) and y ̂ 1 2 ( 1 t c X ̂ i t c ħ P ̂ ) ,
H ̂ D = 1 2 ħ Ω ( y ̂ y ̂ + y ̂ y ̂ y ̂ y ̂ y ̂ y ̂ ) with Ω k 2 ħ t c 2 n 0 .
y ̂ ( z ) = μ y ̂ ( 0 ) + ν y ̂ ( 0 ) and y ̂ ( z ) = ν * y ̂ ( 0 ) + μ * y ̂ ( 0 ) ,
S ̂ D exp [ i 2 Ω z ( y ̂ y ̂ + y ̂ y ̂ y ̂ y ̂ y ̂ y ̂ ) ] ,
Ω , ϕ S ̂ D ϕ .
M ̂ y ̂ e i ψ + y ̂ e i ψ
Ω , ϕ ( Δ M ̂ ) 2 Ω , ϕ = cos 2 δ + [ ( z Z D ) cos δ + sin δ ] 2 .
: ( Δ M ̂ ) 2 : = ( Δ M ) 2 P ( ϕ ) d ( Re ϕ ) d ( Im ϕ ) ,
( Δ M ̂ ) 2 = 1 + ( Δ M ) 2 P ( ϕ ) d ( Re ϕ ) d ( Im ϕ ) .

Metrics