Abstract

Errors in the recent article, “Quantum optics with particles of light,” are discussed. “Dispersed states” resulting from linear optics are simply coherent states, and have no interesting quantum statistics.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Kozlov. Quantum optics with particles of light.Opt. Express,  8,688 (2001). http://www.opticsexpress.org/oearchive/source/34146.htm
    [Crossref] [PubMed]
  2. H. A. Haus and Y. Lai. Quantum theory of soliton squeezing: a linearized approach.J. Opt. Soc. Am. B,  7,386 (1990).
    [Crossref]
  3. P. L. Hagelstein. Application of a photon configuration-space model to soliton propagation in a fiber Phys.Rev. A.,  54, 2426 (1996).
    [Crossref]
  4. J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
    [Crossref]
  5. Claude Cohen-Tannoudji. Atom-Photon Interactions. (New York, Wiley, 1992).
  6. H. A. Haus. Electromagnetic noise and quantum optical measurements(New York, Springer, 2000).
  7. J. M. Fini and P. L. Hagelstein. Momentum squeezing of quantum optical pulses. Submitted to Phys.Rev. A.
  8. V. V. Kozlov. private communication, dated September 17, 2001.

2001 (2)

1998 (1)

J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
[Crossref]

1996 (1)

P. L. Hagelstein. Application of a photon configuration-space model to soliton propagation in a fiber Phys.Rev. A.,  54, 2426 (1996).
[Crossref]

1990 (1)

Cohen-Tannoudji, Claude

Claude Cohen-Tannoudji. Atom-Photon Interactions. (New York, Wiley, 1992).

Fini, J. M.

J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
[Crossref]

J. M. Fini and P. L. Hagelstein. Momentum squeezing of quantum optical pulses. Submitted to Phys.Rev. A.

Hagelstein, P. L.

J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
[Crossref]

P. L. Hagelstein. Application of a photon configuration-space model to soliton propagation in a fiber Phys.Rev. A.,  54, 2426 (1996).
[Crossref]

J. M. Fini and P. L. Hagelstein. Momentum squeezing of quantum optical pulses. Submitted to Phys.Rev. A.

Haus, H. A.

J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
[Crossref]

H. A. Haus and Y. Lai. Quantum theory of soliton squeezing: a linearized approach.J. Opt. Soc. Am. B,  7,386 (1990).
[Crossref]

H. A. Haus. Electromagnetic noise and quantum optical measurements(New York, Springer, 2000).

Kozlov, V. V.

Lai, Y.

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Phys. Rev. A (1)

J. M. Fini, P. L. Hagelstein, and H. A. Haus. Configuration-space quantum-soliton model including loss and gain.Phys. Rev. A,  57,4842 (1998).
[Crossref]

Rev. A. (1)

P. L. Hagelstein. Application of a photon configuration-space model to soliton propagation in a fiber Phys.Rev. A.,  54, 2426 (1996).
[Crossref]

Other (4)

Claude Cohen-Tannoudji. Atom-Photon Interactions. (New York, Wiley, 1992).

H. A. Haus. Electromagnetic noise and quantum optical measurements(New York, Springer, 2000).

J. M. Fini and P. L. Hagelstein. Momentum squeezing of quantum optical pulses. Submitted to Phys.Rev. A.

V. V. Kozlov. private communication, dated September 17, 2001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H ̂ = d τ d τ E ( τ , τ ) ϕ ̂ ( τ ) ϕ ̂ ( τ )
ϕ ̂ ( τ ) ψ ( z ) = ϕ 0 ( τ , z ) ψ ( z ) ,
i ħ d d z ϕ 0 ( τ , z ) = d τ E ( τ , τ ) ϕ 0 ( τ , z ) ,
X ̂ P ̂ = : X ̂ P ̂ : i n d τ ϕ ̂ ( τ ) τ ϕ ̂ τ .
X ̂ P ̂ = X ̂ P ̂ i n d τ ϕ 0 * ( τ , z ) τ τ ϕ 0 ( τ , z ) .
Δ q ̂ 2 coh out = Δ q ̂ 2 min dispersed 1
α ( τ , z ) r ̂ 2 α ( τ , z ) = α ( τ , z ) r ̂ α ( τ , z ) 2 + d τ f ( τ ) 2 .

Metrics