Abstract

The spatio-temporal evolution of the free electron density induced in a helium gas jet by an intense femtosecond pulse is measured with ~10 fs resolution in a ~1 ps temporal window. The double-step-ionization feature is observed. In these measurements, we use the technique of single-shot supercontinuum spectral interferometry. It is demonstrated that finite laser-gas interaction lengths can strongly affect the interpretation of such measurements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L .V. Keldysh, �??Ionization in the field of a strong electromagnetic wave,�?? Sov. Phys. JETP 20, 1307-1314 (1965).
  2. S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, �??Tunneling ionization of noble gases in a high-intensity laser field,�?? Phys. Rev. Lett. 63, 2212-2215 (1989).
    [CrossRef] [PubMed]
  3. P. B. Corkum, �??Plasma perspective on strong-field multiphoton ionization,�?? Phys. Rev. Lett. 71, 1994-1997 (1993).
    [CrossRef] [PubMed]
  4. A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. McIntyre, K. Boyer, and C. K. Rhodes, �??Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,�?? J. Opt. Soc. Am. B 4, 595-601 (1987).
    [CrossRef]
  5. M. Ferray, A L�??Huillier, X. F. Li, L. A. Lompré, G. Mainfray and C. Manus, �??Multiple-harmonic conversion of 1064 nm radiation in rare gases,�?? J. Phys. B: At. Mol. Opt. Phys. 21, L31-L35 (1988).
    [CrossRef]
  6. C. E. Max, J. Arons, and A. B. Langdon, �??Self-modulation and self-focusing of electromagnetic waves in plasmas,�?? Phys. Rev. Lett. 33, 209-212 (1974).
    [CrossRef]
  7. J. Fuchs, G. Malka, J. C. Adam, F. Amiranoff, S. D. Baton, N. Blanchot, A. Héron, G. Laval, J. L. Miquel, P. Mora, H. Pépin, and C. Rousseaux, �??Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma,�?? Phys. Rev. Lett. 80, 1658-1661 (1998).
    [CrossRef]
  8. T. Tajima and J. M. Dawson, �??Laser electron accelerator,�?? Phys. Rev. Lett. 43, 267-270(1979).
    [CrossRef]
  9. S. Augst, D. D. Meyerhofer, D. Strickland and S. L. Chin, �??Laser ionization of noble gases by Coulombbarrier suppression,�?? J. Opt. Soc. Am. B 8, 858-867 (1991).
    [CrossRef]
  10. D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, �??Observation of nonsequential double ionization of helium with optical tunneling,�?? Phys. Rev. Lett. 69, 2642-2645 (1992).
    [CrossRef] [PubMed]
  11. W. M. Wood, C. W. Siders, and M. C. Downer, �??Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,�?? Phys. Rev. Lett. 67, 3523-3526 (1991).
    [CrossRef] [PubMed]
  12. W. M. Wood, C. W. Siders, and M. C. Downer, �??Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,�?? IEEE Trans. Plasma Sci. 21, 20-33 (1993).
    [CrossRef]
  13. E. Tokunaga, A. Terasaki, and T. Kobayashi, �??Frequency-domain interferometer for femtosecond timeresolved phase spectroscopy,�?? Opt. Lett. 17, 1131-1133 (1992).
    [CrossRef] [PubMed]
  14. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. Dos Santos, G. Hamoniaux, and G, A. Antonetti, �??Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma,�?? Opt. Lett. 19, 1997-1999 (1994).
    [CrossRef] [PubMed]
  15. J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, �??Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse,�?? Phys. Rev. Lett. 76, 3566-3569 (1996).
    [CrossRef] [PubMed]
  16. C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, and M. C. Downer, �??Laser wakefield excitation and measurement by femtosecond longitudinal interferometry,�?? Phys. Rev. Lett. 76, 3570-3573 (1996).
    [CrossRef] [PubMed]
  17. J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, Geindre, A. Antonetti, T. M. Antonsen, Jr., P. Chessa, and P. Mora, �??Laser wakefield: Experimental study of nonlinear radial electron oscillations,�?? Phys. Plasmas 5, 1162-1177 (1998)
    [CrossRef]
  18. E. Takahashi, H. Honda, E. Miura, N. Yugami, Y. Nishida, K. Katsura, and K. Kondo, �??Observation of spatial asymmetry of THz oscillating electron plasma wave in a laser wakefield,�?? Phys. Rev. E 62, 7247-7250 (2000).
    [CrossRef]
  19. E. Tokunaga, A. Terasaki, and T. Kobayashi, �??Femtosecond continuum interferometer for transient phase and transmission spectroscopy,�?? J. Opt. Soc. Am. B 13, 496-513 (1996).
    [CrossRef]
  20. C. Y. Chien, B. La Fontaine, A. Desparois, Z. Jiang, T. W. Johnston, J. C. Kieffer, H. Pépin, and F. Vidal, �??Single-shot chirped-pulse spectral interferometry used to measure the femtosecond ionization dynamics of air,�?? Opt. Lett. 25, 578-580 (2000).
    [CrossRef]
  21. J.-P. Geindre, P. Audebert, S. Rebibo, and J.-C. Gauthier, �??Single-shot spectral interferometry with chirped pulses,�?? Opt. Lett. 26, 1612-1614 (2001).
    [CrossRef]
  22. S. P. Le Blanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, �??Single-shot measurement of temporal phase shifts by frequency-domain holography,�?? Opt. Lett. 25, 764-766 (2000).
    [CrossRef]
  23. K. Y. Kim, I. Alexeev, and H. M. Milchberg, �??Single-shot supercontinuum spectral interferometry,�?? Appl. Phys. Lett. 81, 4124-4126 (2002).
    [CrossRef]
  24. K. Y. Kim, I. Alexeev, and H. M. Milchberg, �??Time resolved explosion of intense-laser-heated clusters,�?? Phys. Rev. Lett., in press.
  25. M. V. Ammosov, N. B. Delone, and V. P. Krainov, �??Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,�?? Sov. Phys. JETP 64, 1191-1194 (1987).
  26. J. Fan, E. Parra, and H. M. Milchberg, �??Resonant self-trapping and absorption of intense Bessel beams,�?? Phys. Rev. Lett. 84, 3085-3088 (2000).
    [CrossRef] [PubMed]
  27. R. L. Kelly, �??Atomic and ionic spectrum lines below 2000 Angstroms: hydrogen through krypton,�?? J. Phys. Chem. Ref. Data Suppl. 16, 1-1678 (1987).
  28. M. Takeda, H. Ina, and S. Kobayashi, �??Fourier-transform method of fringe-pattern analysis for computerbased topography and interferometry,�?? J. Opt. Soc. Am. 7, 156-160 (1982).
    [CrossRef]
  29. I. Alexeev, K. Y. Kim, and H. M. Milchberg, �??Measurement of the Superluminal group velocity of an ultrashort Bessel beam pulse,�?? Phys. Rev. Lett. 88, 073901 (2002).
    [CrossRef] [PubMed]
  30. P. Monot, T. Auguste, L. A. Lompré, G. Mainfray, and C. Manus, �??Focusing limits of a terawatt laser in an underdense plasma,�?? J. Opt. Soc. Am. B 9, 1579-1584 (1992).
    [CrossRef]
  31. S. P. Nikitin, Y. Li, T. M. Antonsen, and H. M. Milchberg, �??Ionization-induced pulse shortening and retardation of high intensity femtosecond laser pulses,�?? Opt. Commun. 157, 139-144 (1998).
    [CrossRef]
  32. Pollock, Fundamentals of optoelectronics (Irwin, 1995), Chap. 9.
  33. C. W. Siders, G. Rodriguez, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, �??Measurement of ultrafast ionization dynamics of gases by multipulse interferometric frequency-resolved optical gating,�?? Phys. Rev. Lett. 87, 263002 (2001).
    [CrossRef]

Appl. Phys. Lett.

K. Y. Kim, I. Alexeev, and H. M. Milchberg, �??Single-shot supercontinuum spectral interferometry,�?? Appl. Phys. Lett. 81, 4124-4126 (2002).
[CrossRef]

IEEE Trans. Plasma Sci.

W. M. Wood, C. W. Siders, and M. C. Downer, �??Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting,�?? IEEE Trans. Plasma Sci. 21, 20-33 (1993).
[CrossRef]

J. Opt. Soc. Am.

M. Takeda, H. Ina, and S. Kobayashi, �??Fourier-transform method of fringe-pattern analysis for computerbased topography and interferometry,�?? J. Opt. Soc. Am. 7, 156-160 (1982).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B: At. Mol. Opt. Phys.

M. Ferray, A L�??Huillier, X. F. Li, L. A. Lompré, G. Mainfray and C. Manus, �??Multiple-harmonic conversion of 1064 nm radiation in rare gases,�?? J. Phys. B: At. Mol. Opt. Phys. 21, L31-L35 (1988).
[CrossRef]

J. Phys. Chem. Ref. Data Suppl.

R. L. Kelly, �??Atomic and ionic spectrum lines below 2000 Angstroms: hydrogen through krypton,�?? J. Phys. Chem. Ref. Data Suppl. 16, 1-1678 (1987).

Opt. Commun.

S. P. Nikitin, Y. Li, T. M. Antonsen, and H. M. Milchberg, �??Ionization-induced pulse shortening and retardation of high intensity femtosecond laser pulses,�?? Opt. Commun. 157, 139-144 (1998).
[CrossRef]

Opt. Lett.

Phys. Plasmas

J. R. Marquès, F. Dorchies, F. Amiranoff, P. Audebert, J. C. Gauthier, Geindre, A. Antonetti, T. M. Antonsen, Jr., P. Chessa, and P. Mora, �??Laser wakefield: Experimental study of nonlinear radial electron oscillations,�?? Phys. Plasmas 5, 1162-1177 (1998)
[CrossRef]

Phys. Rev. E

E. Takahashi, H. Honda, E. Miura, N. Yugami, Y. Nishida, K. Katsura, and K. Kondo, �??Observation of spatial asymmetry of THz oscillating electron plasma wave in a laser wakefield,�?? Phys. Rev. E 62, 7247-7250 (2000).
[CrossRef]

Phys. Rev. Lett.

J. Fan, E. Parra, and H. M. Milchberg, �??Resonant self-trapping and absorption of intense Bessel beams,�?? Phys. Rev. Lett. 84, 3085-3088 (2000).
[CrossRef] [PubMed]

I. Alexeev, K. Y. Kim, and H. M. Milchberg, �??Measurement of the Superluminal group velocity of an ultrashort Bessel beam pulse,�?? Phys. Rev. Lett. 88, 073901 (2002).
[CrossRef] [PubMed]

C. W. Siders, G. Rodriguez, J. L. W. Siders, F. G. Omenetto, and A. J. Taylor, �??Measurement of ultrafast ionization dynamics of gases by multipulse interferometric frequency-resolved optical gating,�?? Phys. Rev. Lett. 87, 263002 (2001).
[CrossRef]

J. R. Marquès, J. P. Geindre, F. Amiranoff, P. Audebert, J. C. Gauthier, A. Antonetti, and G. Grillon, �??Temporal and spatial measurements of the electron density perturbation produced in the wake of an ultrashort laser pulse,�?? Phys. Rev. Lett. 76, 3566-3569 (1996).
[CrossRef] [PubMed]

C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, and M. C. Downer, �??Laser wakefield excitation and measurement by femtosecond longitudinal interferometry,�?? Phys. Rev. Lett. 76, 3570-3573 (1996).
[CrossRef] [PubMed]

C. E. Max, J. Arons, and A. B. Langdon, �??Self-modulation and self-focusing of electromagnetic waves in plasmas,�?? Phys. Rev. Lett. 33, 209-212 (1974).
[CrossRef]

J. Fuchs, G. Malka, J. C. Adam, F. Amiranoff, S. D. Baton, N. Blanchot, A. Héron, G. Laval, J. L. Miquel, P. Mora, H. Pépin, and C. Rousseaux, �??Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma,�?? Phys. Rev. Lett. 80, 1658-1661 (1998).
[CrossRef]

T. Tajima and J. M. Dawson, �??Laser electron accelerator,�?? Phys. Rev. Lett. 43, 267-270(1979).
[CrossRef]

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, �??Observation of nonsequential double ionization of helium with optical tunneling,�?? Phys. Rev. Lett. 69, 2642-2645 (1992).
[CrossRef] [PubMed]

W. M. Wood, C. W. Siders, and M. C. Downer, �??Measurement of femtosecond ionization dynamics of atmospheric density gases by spectral blueshifting,�?? Phys. Rev. Lett. 67, 3523-3526 (1991).
[CrossRef] [PubMed]

S. Augst, D. Strickland, D. D. Meyerhofer, S. L. Chin, and J. H. Eberly, �??Tunneling ionization of noble gases in a high-intensity laser field,�?? Phys. Rev. Lett. 63, 2212-2215 (1989).
[CrossRef] [PubMed]

P. B. Corkum, �??Plasma perspective on strong-field multiphoton ionization,�?? Phys. Rev. Lett. 71, 1994-1997 (1993).
[CrossRef] [PubMed]

Sov. Phys. JETP

L .V. Keldysh, �??Ionization in the field of a strong electromagnetic wave,�?? Sov. Phys. JETP 20, 1307-1314 (1965).

M. V. Ammosov, N. B. Delone, and V. P. Krainov, �??Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,�?? Sov. Phys. JETP 64, 1191-1194 (1987).

Other

K. Y. Kim, I. Alexeev, and H. M. Milchberg, �??Time resolved explosion of intense-laser-heated clusters,�?? Phys. Rev. Lett., in press.

Pollock, Fundamentals of optoelectronics (Irwin, 1995), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Theoretical spatio-temporal electron density profile at the laser focus using ADK theory with τFWHM = 240 fs, rFWHM = 10.3μm, and Ipeak = 3.8 × 1016 W/cm2. (b) On-axis electron density evolution (blue line) and pump pulse envelope (red line). (c) Electron density profiles at Δt = 20 fs time increments.

Fig. 2.
Fig. 2.

(a) Experimental setup with pump beam and chirped supercontinuum (SC) reference and probe pulses combined at a beam splitter and focused into a helium gas jet. The pump is dumped and the reference and probe SC pulses are relayed to the imaging spectrometer. Sample spectral interferograms are shown with the helium gas jet (b) off and (c) on .

Fig. 3.
Fig. 3.

(a) Experimental spatio-temporal phase profile ΔΦ(x, t) from optical field ionization of helium at 15 psi jet backing pressure. (b) Central line-outs for jet backing pressures of 5psi (line with solid triangles) and 15psi (line with squares). The pump pulse envelope obtained from XPM in glass is also shown (line with circles). The inset shows spatial phase profiles from the 5 psi case at 20 fs increments.

Fig. 4.
Fig. 4.

(a) Schematic pump-probe diagram. A slice of the probe pulse samples the volume of the helium plasma. (b) Theoretical electron density profiles N e(x, z, t’-τ) that a slice of the probe pulse δpr(t-τ) samples with τ= 50 fs time increments.

Fig. 5.
Fig. 5.

Theoretical probe phase profiles ΔΦ(x, t) at the end of the helium plasma with the laser-gas interaction length Δz (a) 0.1 mm, (b) 0.25 mm, (c) 0.5 mm, (d) 0.75 mm, (e) 1 mm, and (f) 2 mm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w = ω at ( 3 e π ) 3 / 2 Z 2 3 n eff 9 / 2 ( 4 e Z 3 n eff 4 E H ) 2 n eff 3 / 2 exp ( 2 Z 3 3 n eff 3 E H )
I pump r t = I peak e 4 ln 2 ( t t peak ) 2 / τ FWHM 2 . e 4 ln 2 ( r / r FWHM ) 2
ΔΦ ( x , t τ ) = Im ( ln ( E ˜ pr 0 x ω e i ϕ r , x ω + i Δϕ x ω e ( t τ ) E ˜ r 0 x ω e i ϕ r x ω e ( t τ ) ) )

Metrics