Abstract

A light-driven micromanipulation system with real-time user-feedback control is used to simultaneously trap colloidal suspensions enabling a unique interactive sorting capability and arbitrary patterning of microscopic particles. The technique is based on a straightforward phase-to-intensity conversion generating multiple beam patterns for manipulation of particles in the observation plane of a microscope. Encoding of phase patterns in a spatial light modulator, which is directly controlled by a computer, allows for dynamic reconfiguration of the trapping patterns, where independent control of the position, size, shape and intensity of each beam is possible. Efficient sorting of microsphere mixtures of distinct sizes and colors using multiple optical traps is demonstrated.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid optical tweezers for dynamic micro-bead arrays

Yoshio Tanaka, Shogo Tsutsui, Mitsuru Ishikawa, and Hiroyuki Kitajima
Opt. Express 19(16) 15445-15451 (2011)

Microfluidic sorting with a moving array of optical traps

Raktim Dasgupta, Sunita Ahlawat, and Pradeep Kumar Gupta
Appl. Opt. 51(19) 4377-4387 (2012)

Multiple traps created with an inclined dual-fiber system

Yuxiang Liu and Miao Yu
Opt. Express 17(24) 21680-21690 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
    [Crossref] [PubMed]
  3. M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
    [Crossref]
  4. A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
    [Crossref] [PubMed]
  5. A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
    [Crossref]
  6. J. Joannopoulos, “Self-assembly lights up,” Nature 414, 257 (2001).
    [Crossref] [PubMed]
  7. R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
    [Crossref] [PubMed]
  8. S. M. Mahurinet al., “Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres,” Opt. Lett. 27, 610 (2002).
    [Crossref]
  9. J. Knight, “Honey, I shrunk the lab,” Nature 418, 474 (2002).
    [Crossref] [PubMed]
  10. D. R. Meldrum and M. R. Holl, “Microscale bioanalytical systems,” Science 297, 1197 (2002).
    [Crossref] [PubMed]
  11. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
    [Crossref]
  12. T. Mülleret al., “A 3D-micro electrode for handling and caging single cells and particles,” Biosensors Bioelectronics 14, 247 (1999).
    [Crossref]
  13. S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
    [Crossref]
  14. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463 (1991).
    [Crossref] [PubMed]
  15. M. P. MacDonaldet al., “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101 (2002).
    [Crossref] [PubMed]
  16. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, ”Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608 (1999).
    [Crossref]
  17. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268 (2001).
    [Crossref]
  18. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267 (2002).
    [Crossref]
  19. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597.
    [Crossref] [PubMed]
  20. J. Arlt and M. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191 (2000).
    [Crossref]
  21. P. Zemanek, A. Jonas, L. Sramek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448 (1999).
    [Crossref]
  22. J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
    [Crossref]
  23. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
    [Crossref] [PubMed]
  24. A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743 (2002).
    [Crossref]
  25. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827 (1996).
    [Crossref] [PubMed]
  26. Y. Ogura, N. Shirai, and J. Tanida, “Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources,” Appl. Opt. 41, 5645 (2002).
    [Crossref] [PubMed]

2002 (12)

A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
[Crossref] [PubMed]

A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
[Crossref]

S. M. Mahurinet al., “Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres,” Opt. Lett. 27, 610 (2002).
[Crossref]

J. Knight, “Honey, I shrunk the lab,” Nature 418, 474 (2002).
[Crossref] [PubMed]

D. R. Meldrum and M. R. Holl, “Microscale bioanalytical systems,” Science 297, 1197 (2002).
[Crossref] [PubMed]

M. P. MacDonaldet al., “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101 (2002).
[Crossref] [PubMed]

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267 (2002).
[Crossref]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-14-597.
[Crossref] [PubMed]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743 (2002).
[Crossref]

Y. Ogura, N. Shirai, and J. Tanida, “Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources,” Appl. Opt. 41, 5645 (2002).
[Crossref] [PubMed]

2001 (4)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path interferometry,” Appl. Opt. 40, 268 (2001).
[Crossref]

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

J. Joannopoulos, “Self-assembly lights up,” Nature 414, 257 (2001).
[Crossref] [PubMed]

2000 (2)

R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
[Crossref] [PubMed]

J. Arlt and M. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191 (2000).
[Crossref]

1999 (4)

P. Zemanek, A. Jonas, L. Sramek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448 (1999).
[Crossref]

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

T. Mülleret al., “A 3D-micro electrode for handling and caging single cells and particles,” Biosensors Bioelectronics 14, 247 (1999).
[Crossref]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, ”Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608 (1999).
[Crossref]

1996 (1)

1991 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
[Crossref] [PubMed]

1986 (1)

Arlt, J.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

J. Arlt and M. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191 (2000).
[Crossref]

Arnold, F. H.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Ashikin, A.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
[Crossref] [PubMed]

Askay, I. A.

R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
[Crossref] [PubMed]

Bjorkholm, J. E.

Chu, S.

Daria, V. R.

Dholakia, K.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
[Crossref] [PubMed]

A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
[Crossref]

Eriksen, R. L.

Friese, M. E. J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

Fu, A. Y.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Gahagan, K. T.

Garcés-Chávez, V.

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

Gauthier, R. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

Glückstad, J.

Gold, J.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

Grover, C. P.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

Grover, S. C.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

Hagberg, P.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

Haist, T.

Hanstrop, D.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

Hayward, R. C.

R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
[Crossref] [PubMed]

Holl, M. R.

D. R. Meldrum and M. R. Holl, “Microscale bioanalytical systems,” Science 297, 1197 (2002).
[Crossref] [PubMed]

Joannopoulos, J.

J. Joannopoulos, “Self-assembly lights up,” Nature 414, 257 (2001).
[Crossref] [PubMed]

Jonas, A.

Kitamura, N.

Knight, J.

J. Knight, “Honey, I shrunk the lab,” Nature 418, 474 (2002).
[Crossref] [PubMed]

Koshioka, M.

Liska, M.

MacDonald, M. P.

M. P. MacDonaldet al., “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101 (2002).
[Crossref] [PubMed]

Mahurin, S. M.

Marr, D. W. M.

A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
[Crossref]

A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
[Crossref] [PubMed]

Masuhara, H.

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

Meldrum, D. R.

D. R. Meldrum and M. R. Holl, “Microscale bioanalytical systems,” Science 297, 1197 (2002).
[Crossref] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

Misawa, H.

Mogensen, P. C.

Müller, T.

T. Mülleret al., “A 3D-micro electrode for handling and caging single cells and particles,” Biosensors Bioelectronics 14, 247 (1999).
[Crossref]

O’Neil, A.

Oakley, J.

A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
[Crossref] [PubMed]

A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
[Crossref]

Ogura, Y.

Padgett, M.

Quake, S. R.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Reicherter, M.

Rubinsztein-Dunlop, H.

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

Sasaki, K.

Saville, D. A.

R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
[Crossref] [PubMed]

Scherer, A.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Shirai, N.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

Skirtach, A. G.

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

Spence, C.

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Sramek, L.

Swartzlander, G. A.

Tanida, J.

Terray, A.

A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
[Crossref]

A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
[Crossref] [PubMed]

Tiziani, H. J.

Wagemann, E. U.

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
[Crossref] [PubMed]

Zemanek, P.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. E. J. Friese, H. Rubinsztein-Dunlop, J. Gold, P. Hagberg, and D. Hanstrop, “Optically driven micromachine elements,” Appl. Phys. Lett. 78, 547 (2001).
[Crossref]

A. Terray, J. Oakley, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555 (2002).
[Crossref]

Biosensors Bioelectronics (1)

T. Mülleret al., “A 3D-micro electrode for handling and caging single cells and particles,” Biosensors Bioelectronics 14, 247 (1999).
[Crossref]

J. Biomedical Opt. (1)

S. C. Grover, A. G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomedical Opt. 6, 14 (2001).
[Crossref]

Nature (5)

J. Knight, “Honey, I shrunk the lab,” Nature 418, 474 (2002).
[Crossref] [PubMed]

J. Joannopoulos, “Self-assembly lights up,” Nature 414, 257 (2001).
[Crossref] [PubMed]

R. C. Hayward, D. A. Saville, and I. A. Askay, “Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,” Nature 404, 56 (2000).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser,” Nature 330, 769 (1987).
[Crossref] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145 (2002).
[Crossref] [PubMed]

Nature Biotechnol. (1)

A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfabricated fluorescence-activated cell sorter,” Nature Biotechnol. 17, 1109 (1999).
[Crossref]

Opt. Commun. (1)

J. Arlt, V. Garcés-Chávez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (9)

J. Arlt and M. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191 (2000).
[Crossref]

P. Zemanek, A. Jonas, L. Sramek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448 (1999).
[Crossref]

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267 (2002).
[Crossref]

A. O’Neil and M. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743 (2002).
[Crossref]

K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827 (1996).
[Crossref] [PubMed]

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, ”Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608 (1999).
[Crossref]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463 (1991).
[Crossref] [PubMed]

A. Ashikin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 (1986).
[Crossref]

S. M. Mahurinet al., “Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres,” Opt. Lett. 27, 610 (2002).
[Crossref]

Science (3)

A. Terray, J. Oakley, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).
[Crossref] [PubMed]

M. P. MacDonaldet al., “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101 (2002).
[Crossref] [PubMed]

D. R. Meldrum and M. R. Holl, “Microscale bioanalytical systems,” Science 297, 1197 (2002).
[Crossref] [PubMed]

Supplementary Material (3)

» Media 1: MPG (2851 KB)     
» Media 2: MPG (2104 KB)     
» Media 3: MPG (3531 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the experimental setup for implementing interactive optical manipulation of a colloidal suspension. (b) Different geometries of multiple trapping beams. (c) 10 × 10 array of annular beams for trapping of particles with refractive indices lower than that of the surrounding medium. (d) Asymmetric array of 15 × 15 traps with two distinct beam diameters. SLM phase modulation of 0 and π correspond to minimum and maximum intensity, respectively.

Fig. 2.
Fig. 2.

(MPEG, 2919 KB) Non-mechanical removal of microsphere stacking. (a) Blurred image of the topmost microsphere (5μm-diameter) indicating the presence of another particle trapped underneath. Inset: the topmost beam that trapped more than one particle has been selected by the computer “mouse” pointer. (b) Movement of the selected graphic in the directions indicated by the arrows resulting to transverse translation of the specific trapping beam. (c) Introduction of an additional trapping beam. Inset shows the graphic corresponding to the new beam positioned at the site of the ejected particle (2-μm-diameter). (d) The final configuration with an array of distinguishable particles and with one particle per trapping beam. Scale bar, 10 μm.

Fig. 3.
Fig. 3.

(MPEG, 2,154 KB) Image sequences of trapping and sorting of inhomogeneous size mixture of polystyrene beads in water solution with < 1% surfactant. (a) Dispersed beads with diameters 2 μm and 5 μm are first captured by corresponding trapping beams. The beads are held just below the upper surface of the glass chamber. The size of the beam used at each trapping site is proportional to the size of the trapped particle. (b – d) Sorting of the beads according to size. Scale bar, 10 μm.

Fig. 4.
Fig. 4.

(MPEG, 3616KB) Trapping and sorting of inhomogeneous mixture of commercially dyed polystyrene beads. All beads have a diameter of 3 μm. With the mouse-controlled movement of the corresponding trapping beams, the beads are assembled into a 3 × 3 array and subsequently segregated according to color. Scale bar, 10 μm.

Fig. 5.
Fig. 5.

A graphic demonstrating an interactive light-driven ‘lab-on-a-chip’ with multiple functionalities simultaneously programmed by a computer. It enables the user to assemble structures and control the sorting capability of light-driven pumps and valves inside the prefabricated channels of the chip. A mesh intensity pattern guides a network of particles at the topmost compartment to assemble colloidal crystal while hollow beams trap low-index particles at the middle compartment.

Metrics