Abstract

We provide a full analysis of the distortion effects produced by the first and second order in-band dispersion of fiber Bragg grating based optical demultiplexers over analogue SCM (Sub Carrier Multiplexed) signals. Optical bandwidth utilization ranges for Dense WDM network are calculated considering different SCM system cases of frequency extension and modulation conditions.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B.J. Eggleton, G. Lenz, N. Litchinitser, D.B. Patterson and R. E. Slusher, �??Implications pf Fiber Grating Dispersion of WDM Communication Systems,�?? IEEE Photonics Technol. Lett. 9, 1403-1405, (1997).
    [CrossRef]
  2. G. NyKolak, B.J. Eggleton, G.Lenz, and T.A. Strasser, �??Dispersion Penalty Measurements of Narrow Fiber Bragg Gratings at 10 Gb/s,�?? IEEE Photonics Technol. Lett. 10, 1319-1321, (1998).
    [CrossRef]
  3. J, Capmany, D. Pastor, B. Ortega, �??RIN induced by out-of-band dispersion in fiber Bragg Grating based Add-Drop multiplexers,�?? Electron. Lett. 35, 2220-2221, (1999).
    [CrossRef]
  4. L.R. Chen,�?? Relative Intensity noise enhancement due to out-of-band dispersion in cascaded fiber Bragg Gratings,�?? Opt. Commun. 184, 157-160, (2000).
    [CrossRef]
  5. D. Pastor, A. Martinez, J. Capmany and B. Ortega , �??Impact of Fiber Bragg Grating based OADM outband dispersion in DWDM-SCM systems,�?? IEEE Photonics Technol. Lett. 14, 567-569, (2002).
    [CrossRef]
  6. Charles S. Ih. and Wanyi Gu, �??Fiber Induced Distortion in a Sub Carrier Multiplexing Ligthwave System,�?? IEEE J. Selected Areas in Commun. 8, 1296-1303, (1990).
    [CrossRef]
  7. D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, �??Design of apodized linearly chirped fiber gratings for dispersion compensation,�?? IEEE J. Lightwave Technol. 14, 2581-2588 (1996).
    [CrossRef]
  8. M. Ibsen and M.N. Zervas, �??99,9% reflectivity dispersion-less square-filter fiber bragg grating for high speed DWDM networks,�?? Conf. Opt. Fiber. Commun. OSA Tech. Dig. Paper (Optical Society of America, Washington, D.C., 2002) PD21.

Electron. Lett. (1)

J, Capmany, D. Pastor, B. Ortega, �??RIN induced by out-of-band dispersion in fiber Bragg Grating based Add-Drop multiplexers,�?? Electron. Lett. 35, 2220-2221, (1999).
[CrossRef]

IEEE J. Lightwave Technol. (1)

D. Pastor, J. Capmany, D. Ortega, V. Tatay, J. Marti, �??Design of apodized linearly chirped fiber gratings for dispersion compensation,�?? IEEE J. Lightwave Technol. 14, 2581-2588 (1996).
[CrossRef]

IEEE J. Selected Areas in Commun. (1)

Charles S. Ih. and Wanyi Gu, �??Fiber Induced Distortion in a Sub Carrier Multiplexing Ligthwave System,�?? IEEE J. Selected Areas in Commun. 8, 1296-1303, (1990).
[CrossRef]

IEEE Photonics Technol. Lett. (3)

D. Pastor, A. Martinez, J. Capmany and B. Ortega , �??Impact of Fiber Bragg Grating based OADM outband dispersion in DWDM-SCM systems,�?? IEEE Photonics Technol. Lett. 14, 567-569, (2002).
[CrossRef]

B.J. Eggleton, G. Lenz, N. Litchinitser, D.B. Patterson and R. E. Slusher, �??Implications pf Fiber Grating Dispersion of WDM Communication Systems,�?? IEEE Photonics Technol. Lett. 9, 1403-1405, (1997).
[CrossRef]

G. NyKolak, B.J. Eggleton, G.Lenz, and T.A. Strasser, �??Dispersion Penalty Measurements of Narrow Fiber Bragg Gratings at 10 Gb/s,�?? IEEE Photonics Technol. Lett. 10, 1319-1321, (1998).
[CrossRef]

Opt. Commun. (1)

L.R. Chen,�?? Relative Intensity noise enhancement due to out-of-band dispersion in cascaded fiber Bragg Gratings,�?? Opt. Commun. 184, 157-160, (2000).
[CrossRef]

Other (1)

M. Ibsen and M.N. Zervas, �??99,9% reflectivity dispersion-less square-filter fiber bragg grating for high speed DWDM networks,�?? Conf. Opt. Fiber. Commun. OSA Tech. Dig. Paper (Optical Society of America, Washington, D.C., 2002) PD21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

First order dispersion of the apodized UFBG inside the band. 3dB optical bandwidth of 25 GHz. (1) Cosine apodization profile with C=1.2 ([7]), (2) Hiperbolic tangent apodization profile with α=1.75 y β=2 ([7]) and (3) hamming apodization profile with H = 0.8 ([7]). Lg is the grating length that in this case is Lg = 1.168 cm.

Fig. 2.
Fig. 2.

Second order dispersion of the apodised UFBG. Same conditions of Fig. 1.

Fig. 3.
Fig. 3.

IM2(f1 + f2)/C2 and IM3(2f2 - f1)/C2 versus the detuning parameter y for different channel spacing, ΔυC =100, 50 , 25 GHz (3dB optical bandwidths are 50GHz (Lg=0.584 cm), 25GHz (Lg=1.168 cm) and 12.5GHz (Lg=2.336 cm) respectively). Hiperbolic tangent apodization profile with α=1.75 and Β=2, 100 MHz for the common frequency. mi =0.05 and mf =0.2 indexes (directed modulated systems). Results from analitical expressions (3) (continuous line) and numerical simulation (dots).

Fig. 4.
Fig. 4.

IM2/C2 and IM3/C2 terms versus the common frequency. ITU spacing of AυC=50GHz (AυB=25GHz), Hiperbolic tangent apodization profiles with α=1.75 and β=2 , and y = 0 (centre of the FBG). Indexes of modulation mf = 0.2 (continuous line), mf = 0.05 (dashed line) and mf = 0 (dotted line), all traces mi = 0.05.

Fig. 5.
Fig. 5.

Free of distortion optical bandwidth (BWfd) versus the common frequency for IM2 and HD terms (continuous line) and IM3 terms (dashed line). Hiperbolic tangent apodization profiles with α=1.75 y β=2, Intensity modulation indexes mi = 2 , 4 , 8, 16 % . (a) Low/Medium chirped modulation mf = mi , (b)High chirped modulation mf = 4mi .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

e ( t ) = [ 2 ( 1 + m i cos ( W m ) ) ] 1 / 2 cos ( w o t + m f sin ( w m t ) )
I ( t ) = C o + k = 1 { C ck cos [ k ( w m t φ 1 ) ] + C sk sin [ k ( w m t φ 1 ) ] } = C o + k = 1 C k cos [ k ( w m t φ 1 + ϕ k ) ]
C o = a o 2 + ( 1 / 2 ) i = 1 ( a i 2 + b i 2 )
C ck = 2 a o a k cos [ k 2 φ 2 ] cos [ k 3 φ 3 ] 2 a 0 b k sin [ k 2 φ 2 ] sin [ k 3 φ 3 ] +
+ ( 1 / 2 ) k 1 i = 1 ( a i a k i b i b k i ) cos [ ( k 2 2 ik ) φ 2 ] cos [ ( k 3 3 ik 2 + 3 ik 3 ) φ 3 ] +
+ i = 1 ( a i a i + k + b i b i + k ) cos [ ( k 2 + 2 ik ) φ 2 ] cos [ ( k 3 + 3 ik 2 + 3 ki 2 ) φ 3 ]
k 1 i = 1 a i b k i sin [ ( k 2 + 2 ik ) φ 2 ] sin [ ( k 3 3 ik 2 + 3 ki 2 ) φ 3 ]
i = 1 ( a i b i + k + b i a i + k ) sin [ ( k 2 + 2 ik ) φ 2 ] sin [ ( k 3 + 3 ik 2 + 3 ki 2 ) φ 3 ]
C sk = 2 a o a k cos [ k 2 φ 2 ] sin [ k 3 φ 3 ] + 2 a 0 b k sin [ k 2 φ 2 ] cos [ k 3 φ 3 ] +
+ ( 1 / 2 ) k 1 i = 1 ( a i a k i b i b k i ) cos [ ( k 2 2 ik ) φ 2 ] sin [ ( k 3 3 ik 2 + 3 ik 2 ) φ 3 ] +
+ i = 1 ( a i a i + k + b i b i + k ) cos [ ( k 2 + 2 ik ) φ 2 ] sin [ ( k 3 + 3 ik 2 + 3 ki 2 ) φ 3 ] +
+ k 1 i = 1 a i b k i sin [ ( k 2 2 ik ) φ 2 ] cos [ ( k 3 3 ik 2 + 3 ki 2 ) φ 3 ] +
+ i = 1 ( a i b i + k + b i a i + k ) sin [ ( k 2 + 2 ik ) φ 2 ] cos [ ( k 3 + 3 ik 2 + 3 ki 2 ) φ 3 ]

Metrics