Abstract

We present here results using two novel adaptive optic elements, an electro-static membrane mirror, and a dual frequency nematic liquid crystal. These devices have the advantage of low cost, low power consumption, and compact size. Possible applications of the devices are astronomical adaptive optics, laser beam control, laser cavity mode control, and real time holography. Field experiments were performed on the Air Force Research Laboratory, Directed Energy Directorate’s 3.67 meter AMOS telescope on Maui, Hawaii.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vdovin, “Spatial light modulator based on the control of the wave-front curvature,” Opts. Commun. 115, 170–178(1995).
    [CrossRef]
  2. S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
    [CrossRef]
  3. D. C. Dayton, S. R. Restaino, and J. D. Gonglewski, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345, (2000).
    [CrossRef]
  4. S. R. Restaino et.al., “Use of electro-optical device for path-length compensation,” SPIE 2200, 46–48 (1994).
  5. G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. And Photon. News 6, 16–20 (1995).
    [CrossRef]
  6. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
    [CrossRef] [PubMed]
  7. J. Gourlay, G. D. Love, and P. Birch, et. al., “A real time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21, (1997).
    [CrossRef]
  8. D. C. Dayton, S. L. Browne, and S. P. Sandven, et. al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opt. 37, 5579–5589 (1998).
    [CrossRef]
  9. S. R. Restaino, D. C. Dayton, and S. L. Browne, et. al., “One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–7, (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
    [CrossRef] [PubMed]
  10. D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 15, 2345–2355 (2001).
    [CrossRef]
  11. A.F. Naumov and V.N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” Russian Academy of Science, P.N. Lebedev Physical Institute, Samara branch, Report# SPC97-4015 (1997).
  12. V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).
  13. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J.C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source and multiple-distance objects,” Appl. Opt. 36, 3319–3328 (1997).
    [CrossRef] [PubMed]
  14. M. A. Vorontsov and E. W. Justh, “Adaptive optics with advanced phase-contrast techniques, I. High-resolution wave-front sensing,” J. Opt. Soc. Am. 18, 1289–1299 (2001).
    [CrossRef]
  15. R. Dou and M. K. Giles, “Closed-loop adaptive-optics systems with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585, (1995).
    [CrossRef] [PubMed]
  16. D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
    [CrossRef]
  17. E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am A 3, 1833–1839, (1986).
    [CrossRef]
  18. G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 11, 4869–4874 (1973).
    [CrossRef]
  19. E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).
  20. S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).
  21. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [CrossRef] [PubMed]
  22. T.L. Kelly and G. D. Love. “White-light performance of a polarization-independent liquid crystal phase modulator,” Appl. Opt. 38, 10, 1986–1989 (1999).
    [CrossRef]
  23. F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
    [CrossRef]
  24. D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
    [CrossRef]
  25. R. Tyson, Principles of Adaptive Optics, (Academic Press Inc., San Diego, 1991).

2001 (2)

2000 (2)

1999 (2)

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
[CrossRef]

T.L. Kelly and G. D. Love. “White-light performance of a polarization-independent liquid crystal phase modulator,” Appl. Opt. 38, 10, 1986–1989 (1999).
[CrossRef]

1998 (2)

1997 (4)

G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1524 (1997).
[CrossRef] [PubMed]

J. Gourlay, G. D. Love, and P. Birch, et. al., “A real time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21, (1997).
[CrossRef]

M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J.C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source and multiple-distance objects,” Appl. Opt. 36, 3319–3328 (1997).
[CrossRef] [PubMed]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef]

1995 (3)

R. Dou and M. K. Giles, “Closed-loop adaptive-optics systems with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583–1585, (1995).
[CrossRef] [PubMed]

G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. And Photon. News 6, 16–20 (1995).
[CrossRef]

G. Vdovin, “Spatial light modulator based on the control of the wave-front curvature,” Opts. Commun. 115, 170–178(1995).
[CrossRef]

1994 (1)

S. R. Restaino et.al., “Use of electro-optical device for path-length compensation,” SPIE 2200, 46–48 (1994).

1993 (2)

S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).

G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[CrossRef] [PubMed]

1991 (1)

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

1989 (1)

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

1986 (1)

E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am A 3, 1833–1839, (1986).
[CrossRef]

1973 (1)

G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 11, 4869–4874 (1973).
[CrossRef]

1968 (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[CrossRef]

Anderson, M.

S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
[CrossRef]

Baker, J. T.

S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
[CrossRef]

Bareket, N.

E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am A 3, 1833–1839, (1986).
[CrossRef]

Belopukhov, V.N.

A.F. Naumov and V.N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” Russian Academy of Science, P.N. Lebedev Physical Institute, Samara branch, Report# SPC97-4015 (1997).

Birch, P.

J. Gourlay, G. D. Love, and P. Birch, et. al., “A real time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21, (1997).
[CrossRef]

Bonaccini, D.

S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).

Bonaccini, E.

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Browne, S. L.

Bursa, G.

S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).

Carhart, G. W.

Claflin, E. S.

E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am A 3, 1833–1839, (1986).
[CrossRef]

Dayton, D. C.

D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 15, 2345–2355 (2001).
[CrossRef]

D. C. Dayton, S. R. Restaino, and J. D. Gonglewski, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345, (2000).
[CrossRef]

S. R. Restaino, D. C. Dayton, and S. L. Browne, et. al., “One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–7, (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
[CrossRef]

D. C. Dayton, S. L. Browne, and S. P. Sandven, et. al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opt. 37, 5579–5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef]

Dorezyuk, V. A.

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

Dou, R.

Esposito, S.

S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Fender, J.

G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. And Photon. News 6, 16–20 (1995).
[CrossRef]

Giles, M. K.

Gonglewski, J. D.

D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 15, 2345–2355 (2001).
[CrossRef]

D. C. Dayton, S. R. Restaino, and J. D. Gonglewski, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345, (2000).
[CrossRef]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
[CrossRef]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef]

Gourlay, J.

J. Gourlay, G. D. Love, and P. Birch, et. al., “A real time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21, (1997).
[CrossRef]

Grusa, G.

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Justh, E. W.

M. A. Vorontsov and E. W. Justh, “Adaptive optics with advanced phase-contrast techniques, I. High-resolution wave-front sensing,” J. Opt. Soc. Am. 18, 1289–1299 (2001).
[CrossRef]

Kelly, T.L.

Labrunie, G.

G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 11, 4869–4874 (1973).
[CrossRef]

Leslie, F. M.

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[CrossRef]

Love, G. D.

Naumov, A. F.

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

Naumov, A.F.

A.F. Naumov and V.N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” Russian Academy of Science, P.N. Lebedev Physical Institute, Samara branch, Report# SPC97-4015 (1997).

Payne, D.

S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
[CrossRef]

Pruidze, D. V.

Restaino, S. R.

D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt. 40, 15, 2345–2355 (2001).
[CrossRef]

S. R. Restaino, D. C. Dayton, and S. L. Browne, et. al., “One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–7, (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

D. C. Dayton, S. R. Restaino, and J. D. Gonglewski, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345, (2000).
[CrossRef]

S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
[CrossRef]

G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. And Photon. News 6, 16–20 (1995).
[CrossRef]

S. R. Restaino et.al., “Use of electro-optical device for path-length compensation,” SPIE 2200, 46–48 (1994).

Ricklin, J.C.

Robert, J.

G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 11, 4869–4874 (1973).
[CrossRef]

Salinari, P.

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Sandven, S. P.

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
[CrossRef]

D. C. Dayton, S. L. Browne, and S. P. Sandven, et. al., “Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,” Appl. Opt. 37, 5579–5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef]

Shmal’gauzen, V. I.

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

Stefanini, P.

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Tyson, R.

R. Tyson, Principles of Adaptive Optics, (Academic Press Inc., San Diego, 1991).

Vdovin, G.

G. Vdovin, “Spatial light modulator based on the control of the wave-front curvature,” Opts. Commun. 115, 170–178(1995).
[CrossRef]

Voelz, D. G.

Vorontsov, M. A.

M. A. Vorontsov and E. W. Justh, “Adaptive optics with advanced phase-contrast techniques, I. High-resolution wave-front sensing,” J. Opt. Soc. Am. 18, 1289–1299 (2001).
[CrossRef]

M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J.C. Ricklin, and D. G. Voelz, “Adaptive imaging system for phase-distorted extended source and multiple-distance objects,” Appl. Opt. 36, 3319–3328 (1997).
[CrossRef] [PubMed]

Appl. Opt. (6)

Arch. Ration. Mech. Anal. (1)

F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch. Ration. Mech. Anal. 28, 265–283 (1968).
[CrossRef]

J. Appl. Phys. (1)

G. Labrunie and J. Robert, “Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,” J. Appl. Phys. 44, 11, 4869–4874 (1973).
[CrossRef]

J. Opt. Soc. Am A (1)

E. S. Claflin and N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,” J. Opt. Soc. Am A 3, 1833–1839, (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

M. A. Vorontsov and E. W. Justh, “Adaptive optics with advanced phase-contrast techniques, I. High-resolution wave-front sensing,” J. Opt. Soc. Am. 18, 1289–1299 (2001).
[CrossRef]

Opt Exp (1)

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, et. al., “Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,” Opt Exp 1, 338–346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef]

Opt. And Photon. News (1)

G. D. Love, J. Fender, and S. R. Restaino, “Adaptive wave-front shaping using liquid crystals,” Opt. And Photon. News 6, 16–20 (1995).
[CrossRef]

Opt. Commun. (2)

J. Gourlay, G. D. Love, and P. Birch, et. al., “A real time closed loop liquid crystal adaptive optics system: first results,” Opt. Commun. 137, 17–21, (1997).
[CrossRef]

D. C. Dayton, S. R. Restaino, and J. D. Gonglewski, “Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,” Opt. Commun. 176, 339–345, (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opts. Commun. (1)

G. Vdovin, “Spatial light modulator based on the control of the wave-front curvature,” Opts. Commun. 115, 170–178(1995).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid-crystal correctors in adaptive optical systems,” Sov. Phys. Tech. Phys. 34, 1389–1393 (1989).

SPIE (4)

D. C. Dayton, S. P. Sandven, and J. D. Gonglewski, “Closed loop control of a micro-machined membrane mirror,” SPIE 3866, 183–191, (1999).
[CrossRef]

S. R. Restaino, D. Payne, M. Anderson, and J. T. Baker, “Progress report of USAF Research Laboratory liquid crystal AO program,” SPIE 3353, 776–781, Kona, (1998).
[CrossRef]

S. R. Restaino et.al., “Use of electro-optical device for path-length compensation,” SPIE 2200, 46–48 (1994).

E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, and P. Stefanini, “Adaptive optics wavefront corrector using addressable liquid crystal retarders II,” SPIE 1543, 133–143 (1991).

Other (3)

S. Esposito, G. Bursa, and D. Bonaccini, “Liquid crystal wavefront correctors: computer simulation result,” ICO-16 conference on “Active and Adaptive optics,” 289–294 (1993).

R. Tyson, Principles of Adaptive Optics, (Academic Press Inc., San Diego, 1991).

A.F. Naumov and V.N. Belopukhov, “Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,” Russian Academy of Science, P.N. Lebedev Physical Institute, Samara branch, Report# SPC97-4015 (1997).

Supplementary Material (2)

» Media 1: MPG (1441 KB)     
» Media 2: MPG (2611 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of membrane mirror.

Fig. 2.
Fig. 2.

Electrode pattern of the OKO membrane mirror with Shack-Hartmann lenslets overlaid.

Fig. 3.
Fig. 3.

Illustration of dual frequency birefringent liquid crystal cell.

Fig. 4.
Fig. 4.

Diagram of meadowlark optics multi-segment dual frequency liquid crystal phase retarder.

Fig. 5.
Fig. 5.

Block diagram of MIMO pulse-amplitude feedback control algorithm.

Fig. 6.
Fig. 6.

Diagram of experimental breadboard for AMOS field tests.

Fig. 7.
Fig. 7.

Diagram of Coude room at AEOS telescope.

Fig. 8.
Fig. 8.

Long exposure images of Vega using the membrane mirror, ro~19 cm.

Fig. 9.
Fig. 9.

Long exposure images of Arcturas using the liquid crystal, ro~17 cm.

Fig. 10.
Fig. 10.

Open and closed loop images of Seasat using membrane mirror device; Fig. b) is a 1.4 Mbyte mpeg movie showing open and closed loop images.

Fig. 11.
Fig. 11.

Open and closed loop images of the International Space Station using liquid crystal device; Fig. b) is a 2.5 Mbyte mpeg movie showing closed and open loop images.

Tables (1)

Tables Icon

Table 1. Performance Parameters for the AO Devices

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δϕ = 2 π λ d 2 d 2 [ n ( z ) n 0 ] ,
n ( z ) = n e n o [ n o 2 cos 2 θ ( z ) + n e 2 sin 2 θ ( z ) ] 2 .
z [ ( K 11 cos 2 θ + K 33 sin 2 θ ) θ z ] ( K 33 K 11 ) sin θ cos θ ( θ z ) 2
+ ( α 2 sin 2 θ α 3 cos 2 θ ) v z + Δε E 2 4 π sin θ cos θ = γ 1 θ t + I 2 θ t 2 ,
Strehl = e σ 2 ,
σ 2 = σ fit 2 + σ temp 2 + σ wfs 2 .
σ fit 2 α ( r s r 0 ) 5 3 ,
σ temp 2 = ( f g f 3 dB ) 5 3 ,
σ wfs 2 . 35 ( π 2 4 snr 2 ) ,
Strehl mem . 49 ,
Strehl lc . 23 ,

Metrics