Abstract

We present a simple and efficient technique for evaluating the optical losses of a planar film by use of a quasi-waveguide configuration and a prism film coupler configuration. The technique can separate two contributions to optical loss: that from the surface scattering caused by the roughness of surface and that from volume losses including volume scattering and volume absorption.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. D Stanley, W. M. Gibson, and J. W. Rodgers, �??Properties of ion-bombarded fused quartz for integrated optics,�?? Appl. Opt. 11, 1313-1316 (1972).
    [CrossRef]
  2. P. K. Tien, �??Light waves in thin films and integrated optics,�?? Appl. Opt. 10, 2395-2413 (1971).
    [CrossRef] [PubMed]
  3. P. A. Temple, �??Total internal reflection microscopy: a surface inspection technique,�?? Appl. Opt. 20, 2656-2664 (1981).
    [CrossRef] [PubMed]
  4. S. N. Jabr, �??Total internal reflection microscopy: inspection of surfaces of high bulk scatter materials,�?? Appl. Opt. 24, 1689-1692 (1985).
    [CrossRef] [PubMed]
  5. R. Th. Kersten, �??A new method for measuring refractive index and thickness of liquid and deposited solid thin films,�?? Opt. Commun. 13, 327-329 (1975).
    [CrossRef]
  6. T. N. Ding and E. Garmire, �??Measuring refractive index and thickness of thin films: a new technique,�?? Appl. Opt. 22, 3177-3181 (1983).
    [CrossRef] [PubMed]
  7. H. T. Wang, T. Aruga, and P. X. Ye, �??Theory and properties of quasiwaveguide modes,�?? Appl. Phys. Lett. 69, 611-613 (1996).
    [CrossRef]
  8. P. K. Tien, R. Ulrich, and R. J. Martin, �??Modes of propagating light waves in thin deposited semiconductor films,�?? Appl. Phys. Lett. 14, 291-294 (1969).
    [CrossRef]
  9. R. Ulrich and R. Torge, �??Measurement of thin film parameters with a prism coupler,�?? Appl. Opt. 12, 2901-2908 (1973).
    [CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental arrangements for both configurations. (a) Quasi-waveguide (QWG); (b) prism-film coupler (PFC).

Fig. 2.
Fig. 2.

Reflectivity spectra and the losses of the different order modes, in a QWG configuration with n 2=1.64564, n 1=1.50384, n 0=1.0 and W=3.2μm. (a) reflectivity spectra at different values of CS when CV =0; (b) reflectivity spectra at different values of CV when CS =0.

Fig. 3.
Fig. 3.

Reflectivity spectra and the losses of the different order modes, in a PFC configuration with n 3=1.64564, n 2=1.0, n 1=1.50384, n 0=1.45711□D=20nm and W=3.2μm. (a) reflectivity spectra at different values of CS when CV =0; (b) reflectivity spectra at different values of CV when CS =0.

Fig. 4.
Fig. 4.

Reflectivity spectra in the QWG made with a doped polymer film.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r QWG ( θ 1 or α ) = r 21 + t 21 r 10 h S h V exp ( i ϕ W ) t 12 [ 1 h S h V r 12 r 10 exp ( i ϕ W ) ] ,
ϕ W + ϕ 10 + ϕ 12 = 2 ( m = 0,1,2 , ) ,
R PEC ( θ 1 or α ) = r 321 + t 321 r 10 h S h V exp ( i ϕ W ) t 123 [ 1 h S h V r 123 r 10 exp ( i ϕ W ) ] .
ϕ W + ϕ 10 + ϕ 123 = 2 ( m = 0,1,2 , ) .

Metrics