Abstract

Most transitional cell tumorigenesis involves three stages of subcellular morphological changes: hyperplasia, dysplasia and neoplasia. Previous studies demonstrated that owing to its high spatial resolution and intermediate penetration depth, current OCT technology including endoscopic OCT could delineate the urothelium, submucosa and the upper muscular layers of the bladder wall. In this paper, we will discuss the sensitivity and limitations of OCT in diagnosing and staging bladder cancer. Based on histomorphometric evaluations of nuclear morphology, we modeled the resultant backscattering changes and the characteristic changes in OCT image contrast. In the theoretical modeling, we assumed that nuclei were the primary sources of scattering and were uniformly distributed in the uroepithelium, and compared with the results of the corresponding prior OCT measurements. According to our theoretical modeling, normal bladder shows a thin, uniform and low scattering urothelium, so does an inflammatory lesion except thickening in the submucosa. Compared with a normal bladder, a hyperplastic lesion exhibits a thickened, low scattering urothelium whereas a neoplastic lesion shows a thickened urothelium with increased backscattering. These results support our previous animal study that OCT has the potential to differentiate inflammation, hyperplasia, and neoplasia by quantifying the changes in urothelial thickening and backscattering. The results also suggest that OCT might not have the sensitivity to differentiate the subtle morphological changes between hyperplasia and dysplasia based on minor backscattering differences.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

Tuqiang Xie, Huikai Xie, Gary K. Fedder, and Yingtian Pan
Appl. Opt. 42(31) 6422-6426 (2003)

Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherent tomography

Y. T. Pan, T. Q. Xie, C. W. Du, S. Bastacky, S. Meyers, and M. L. Zeidel
Opt. Lett. 28(24) 2485-2487 (2003)

High-resolution imaging characterization of bladder dynamic morphophysiology by time-lapse optical coherence tomography

Y. T. Pan, Q. Wu, Z. G. Wang, P. R. Brink, and C. W. Du
Opt. Lett. 30(17) 2263-2265 (2005)

References

  • View by:
  • |
  • |
  • |

  1. http://www.cancernews.com/category.asp?cat=28&aid=235, “Diagnosis and Treatment of Bladder Cancer.”
  2. J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [Crossref]
  3. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye length measurement by interferometry with partially coherent light,” Opt. Lett. 13, 186–188 (1988).
    [Crossref] [PubMed]
  4. D. Huang, E. A. Swanson, and C. P. Lin, et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  5. Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
    [Crossref]
  6. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
    [Crossref] [PubMed]
  7. C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).
  8. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
    [Crossref]
  9. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology 7, 1–9 (2001).
    [Crossref] [PubMed]
  10. B. W. Colston, U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-230.
    [Crossref] [PubMed]
  11. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
    [Crossref] [PubMed]
  12. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432–440 (1997), http://epubs.osa.org/oearchive/source/2788.htm.
    [Crossref] [PubMed]
  13. Johannes F. de Boer, Shyam M. Srinivas, Arash Malekafzali, Zhongping Chen, and J. Stuart Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-212.
    [Crossref] [PubMed]
  14. Gang Yao and Lihong Wang, “Propagation of polarized light in turbid media: simulated animation sequences”, Opt. Express 7, 198–203 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-5-198.
    [Crossref] [PubMed]
  15. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [Crossref]
  16. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1223 (1999).
    [Crossref]
  17. Volker Westphal, Siavash Yazdanfar, Andrew M. Rollins, and Joseph A. Izatt “Real-time, high velocity-resolution color Doppler optical coherence tomography”, Opt. Lett. 27, 34–36 (2002).
    [Crossref]
  18. F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent’eva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetzova, “Endoscopic applications of optical coherence tomography,” Opt. Express 3, 257–270 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-257.
    [Crossref] [PubMed]
  19. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
    [Crossref]
  20. T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).
  21. Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.
  22. Andrew Rollins, Joseph Izatt, Manish Kulkarni, Siavash Yazdanfar, and Rujchai Ung-arunyawee, “In vivo video rate optical coherence tomography”, Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219.
    [Crossref] [PubMed]
  23. Yingtian Pan, Reginald Birngruber, Jurgen Rosperich, and Ralf Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [Crossref] [PubMed]
  24. M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
    [Crossref]
  25. William M. Murphy, Bruce Beckwith, and George M. FarrowTumors of the kidney, bladder and related urinary structures, Chapter 2 (Armed Forces Institute of Pathology, Washington, 1994).
  26. J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
    [Crossref]
  27. J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
    [Crossref]
  28. M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353, 2002.
    [Crossref] [PubMed]
  29. Gang Yao and Lihong V Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
    [Crossref] [PubMed]
  30. M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
    [Crossref]
  31. F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
    [Crossref] [PubMed]

2002 (3)

2001 (3)

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology 7, 1–9 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (5)

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[Crossref]

Gang Yao and Lihong V Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

1998 (4)

1997 (3)

1996 (1)

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

1995 (1)

1994 (1)

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

1993 (2)

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, and C. P. Lin, et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1988 (1)

Baumgartner, R.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Bckhause, M A

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

Beckwith, Bruce

William M. Murphy, Bruce Beckwith, and George M. FarrowTumors of the kidney, bladder and related urinary structures, Chapter 2 (Armed Forces Institute of Pathology, Washington, 1994).

Birngruber, Reginald

Boppart, S. A.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Bouma, B. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Chen, Zhongping

Chumakov, Y. P.

Chumakov, Yu. P.

Colston, B. W.

DaSilva, L. B.

de Boer, Johannes F.

Denisenko, A. N.

Deutsch, T. F.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Dmitriev, G. I.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Drexler, W.

Engelhardt, Ralf

Enquist, H.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Everett, M. J.

Farrow, George M.

William M. Murphy, Bruce Beckwith, and George M. FarrowTumors of the kidney, bladder and related urinary structures, Chapter 2 (Armed Forces Institute of Pathology, Washington, 1994).

Fedder, G. K.

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

Feldchtein, F. I.

Fercher, A. F.

Frakas, D. L.

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Fujimoto, J. G.

M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353, 2002.
[Crossref] [PubMed]

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[Crossref]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

Gelikonov, G. V.

Gelikonov, V. M.

Gladkova, N. D.

Hartl, I.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

Hofstaedter, F.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Hofstetter, A.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Huang, D.

Ippen, E. P.

Izatt, J. A.

Izatt, Joseph

Izatt, Joseph A.

Kartner, F. X.

Knuechel, R.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Knuttel, A

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

Knuttel, A.

Ko, T.

Koenig, F.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Kowalczyk, A.

Kowalevicz, M.

Kriegmair, M.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Kulkarni, Manish

Kuranov, R. V.

Kuznetzova, I. A.

Larne, R.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Lavelle, J. P.

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Leitgeb, R.

Li, X. D.

Li, Zhigang

Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.

Lin, C. P.

D. Huang, E. A. Swanson, and C. P. Lin, et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Malekafzali, Arash

McGovern, F. J.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Mengedoht, K.

Meyers, S.

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Morgner, U.

Murphy, William M.

William M. Murphy, Bruce Beckwith, and George M. FarrowTumors of the kidney, bladder and related urinary structures, Chapter 2 (Armed Forces Institute of Pathology, Washington, 1994).

Nikulin, N. K.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Otis, L. L.

Pan, Y.

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

Pan, Yingtian

Yingtian Pan, Reginald Birngruber, Jurgen Rosperich, and Ralf Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
[Crossref] [PubMed]

Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.

Petrova, G. A.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Pirtskhalaishvili, G.

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Pitris, C.

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography”, Opt. Lett. 24, 1221–1223 (1999).
[Crossref]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Pochinko, V. V.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432–440 (1997), http://epubs.osa.org/oearchive/source/2788.htm.
[Crossref] [PubMed]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Pollnau, M.

Pravdenko, K. I.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

Rollins, Andrew

Rollins, Andrew M.

Rosperich, Jurgen

Salathe, R. P.

Sathyam, U. S.

Schmitt, J M

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

Schmitt, J. M.

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

J. M. Schmitt and A. Knuttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14, 1231–1242 (1997).
[Crossref]

Schomacker, K. T.

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. A. Puliafito, J. S. Schuman, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18, 1864 (1993).
[Crossref] [PubMed]

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

Sergeev, A. M.

Shabanov, D. V.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Shakhov, A. V.

Shakhova, N. M.

Snopova, L. B.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Srinivas, Shyam M.

Stepp, H.

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

Streltzova, O. S.

Stroeve, P.

Stuart Nelson, J.

Swanson, E. A.

Tearney, G. J.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

Terent’eva, A. B.

Ung-arunyawee, Rujchai

V Wang, Lihong

Gang Yao and Lihong V Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Vazina, I. R.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Wang, Lihong

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology 7, 1–9 (2001).
[Crossref] [PubMed]

Werner, W.

Westphal, Volker

Wojtkowski, M.

Xie, H.

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26, 1966–1968 (2001).
[Crossref]

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

Xie, T.

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

Xie, Tuqiang

Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.

Yadlowsky, M

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

Yao, Gang

Gang Yao and Lihong Wang, “Propagation of polarized light in turbid media: simulated animation sequences”, Opt. Express 7, 198–203 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-5-198.
[Crossref] [PubMed]

Gang Yao and Lihong V Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Yazdanfar, Siavash

Zagainova, E. V.

Zeidel, M.

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

Zeidel, M. L.

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Zeidel, Mark L.

Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.

Zhegalov, V. A.

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Appl. Opt. (1)

BJU International (1)

F. Koenig, F. J. McGovern, R. Larne, H. Enquist, K. T. Schomacker, and T. F. Deutsch, “Diagnosis of bladder carcinoma using protoporphyrin IX fluorescence induced by 5-aminolaevulinic acid,” BJU International 83, 129–135 (1999).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

M. E. Brezinski and J. G. Fujimoto, “Optical Coherence Tomography: High-Resolution Imaging in Nontransparent Tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[Crossref]

J. M. Schmitt, “Optical Coherence Tomography (OCT): A Review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[Crossref]

J. of Urology (1)

M. Kriegmair, R. Baumgartner, R. Knuechel, H. Stepp, F. Hofstaedter, and A. Hofstetter, “Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence,” J. of Urology 155, 105–110 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

Y. Pan, J. P. Lavelle, S. Meyers, G. Pirtskhalaishvili, M. L. Zeidel, and D. L. Frakas, “Detection of tumorigenesis in rat bladders with optical coherence tomography,” Med. Phys. 28, 2432–2440 (2001).
[Crossref]

Opt. Express (7)

B. W. Colston, U. S. Sathyam, L. B. DaSilva, M. J. Everett, P. Stroeve, and L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-230.
[Crossref] [PubMed]

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Yu. P. Chumakov, and O. S. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1, 432–440 (1997), http://epubs.osa.org/oearchive/source/2788.htm.
[Crossref] [PubMed]

Johannes F. de Boer, Shyam M. Srinivas, Arash Malekafzali, Zhongping Chen, and J. Stuart Nelson, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-212.
[Crossref] [PubMed]

Gang Yao and Lihong Wang, “Propagation of polarized light in turbid media: simulated animation sequences”, Opt. Express 7, 198–203 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-5-198.
[Crossref] [PubMed]

F. I. Feldchtein, V. M. Gelikonov, G. V. Gelikonov, A. M. Sergeev, N. D. Gladkova, A. V. Shakhov, N. M. Shakhova, L. B. Snopova, A. B. Terent’eva, E. V. Zagainova, Y. P. Chumakov, and I. A. Kuznetzova, “Endoscopic applications of optical coherence tomography,” Opt. Express 3, 257–270 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-257.
[Crossref] [PubMed]

M. Kowalevicz, T. Ko, I. Hartl, J. G. Fujimoto, M. Pollnau, and R. P. Salathe, “Ultrahigh resolution optical coherence tomography using a superluminescent light source,” Opt. Express 10, 349–353, 2002.
[Crossref] [PubMed]

Andrew Rollins, Joseph Izatt, Manish Kulkarni, Siavash Yazdanfar, and Rujchai Ung-arunyawee, “In vivo video rate optical coherence tomography”, Opt. Express 3, 219–229 (1998), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-6-219.
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Med. Biol. (2)

J M Schmitt, A Knuttel, M Yadlowsky, and M A Bckhause, “Optical-coherence tomography of a dense tissue: statistics of attention of backscattering,” Phys. Med. Biol. 39,1705–1720 (1993).
[Crossref]

Gang Yao and Lihong V Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307–2320 (1999).
[Crossref] [PubMed]

Proc. SPIE (2)

A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, K. I. Pravdenko, D. V. Shabanov, N. D. Gladkova, V. V. Pochinko, V. A. Zhegalov, G. I. Dmitriev, I. R. Vazina, G. A. Petrova, and N. K. Nikulin, “In vivo optical coherence tomography of human skin microstructure,” Proc. SPIE 2328, 144–150 (1994).
[Crossref]

Tuqiang Xie, Zhigang Li, Mark L. Zeidel, and Yingtian Pan, “Optical imaging diagnostics of bladder tissue with optical coherence tomography”, Proc. SPIE 4609, in print.

Science (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography,” Science 276, 2037–2039 (1997).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, and C. P. Lin, et al., “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Skin Research and Technology (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Research and Technology 7, 1–9 (2001).
[Crossref] [PubMed]

Other (4)

C. A. Puliafito, M. R. Hee, J. S. Schuman, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases (SLACK, Thorofare, NJ, 1996).

http://www.cancernews.com/category.asp?cat=28&aid=235, “Diagnosis and Treatment of Bladder Cancer.”

T. Xie, H. Xie, G. K. Fedder, M. Zeidel, and Y. Pan, “Endoscopic Optical Coherence Tomography with a Micromachined Mirror,” 2nd Annual International IEEE-EMBS, Madison, Wisconsin, USA, May 2–4, 208–211 (2002).

William M. Murphy, Bruce Beckwith, and George M. FarrowTumors of the kidney, bladder and related urinary structures, Chapter 2 (Armed Forces Institute of Pathology, Washington, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the fiber optic OCT system. BBS: broadband light source; LD: aiming laser diode; PD: photo diode; CM: fiber-optic collimator. High-speed reference mirror scanning is grating-lens delay line.

Fig. 2.
Fig. 2.

OCT images of a normal rabbit bladder (A) and rabbit bladder samples injected with saline (B), blood (C) and intralipid (D). U: urothelium, SM: submucosa, M: muscular layers.

Fig. 3.
Fig. 3.

Histologic pictures of normal, hyperplastic, dysplastic, and neoplastic urothelial cells.

Fig. 4.
Fig. 4.

Calculated results of backscattering changes as a function of nuclear morphology (e.g., size, density depicted in Fig. 3).

Fig. 5.
Fig. 5.

Comparisons of hyperplastic and neoplastic rat bladders imaged by OCT with histology. U: normal urothelium, SM: submucosa, M: muscular layer, U’: diseased urothelium.

Fig. 6.
Fig. 6.

A-scans on the normal, hyperplastic and neoplastic regions acquired from the OCT images in Fig. 5. Consecutive A-scans were averaged to reduce speckle noises.

Tables (1)

Tables Icon

Table 1: Histological evaluations of nuclear morphology

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ z = L C = ( 2 ln 2 π ) · ( λ ¯ 2 Δ λ )
Δ r = 2 λ 0 πNA = 4 λ 0 f πϕ
ρ v = 1.33 ρ s 3 2
I ˜ d ( L r ) = 2 I s I r · [ R ( L s ) C ( L s ) ]
I ˜ d ( z ) = k I 0 μ b e μ S z Δ L L C e 4 ( Δ L L c ) 2 cos k ¯ Δ L

Metrics