Abstract

A mathematical model of the behaviour of chirped pulse THz spectrometers is used to describe the response of the instrument to long and short pulses of high or low intensity. It is found that the output can be ambiguous because similar outputs can arise from dissimilar inputs.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Zhiping Jiang and X.-C. Zhang, �??Electro-optic measurement of THz field pulses with a chirped optical beam,�?? Appl. Phys. Lett. 72, 1945 (1998).
    [CrossRef]
  2. F. G. Sun, Zhiping Jiang and X.-C. Zhang, "Analysis of terahertz pulse measurement with a chirped probe beam,�?? Appl. Phys. Lett. 73, 2233 (1998).
    [CrossRef]

Appl. Phys. Lett. (2)

Zhiping Jiang and X.-C. Zhang, �??Electro-optic measurement of THz field pulses with a chirped optical beam,�?? Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

F. G. Sun, Zhiping Jiang and X.-C. Zhang, "Analysis of terahertz pulse measurement with a chirped probe beam,�?? Appl. Phys. Lett. 73, 2233 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Variation of detected pulse length versus input pulse length for strong signals.

Fig. 2.
Fig. 2.

Detected pulse shape for fast weak signals.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

E = A exp ( t t 0 ) 2 T 2
exp it ( ω 0 + αt ) = exp ( t )
ω = dt = ω 0 + 2 αt
f ( t ) ( B + kA exp ( t t 0 ) 2 T 2 ) exp it ( ω 0 + αt )
S ( ω ) + e iωt f ( t ) dt
t = ( ω ω 0 ) 2 α
S ( ω ) kA + exp t [ i ( ω ω 0 ) + 2 t 0 T 2 ] exp t 2 ( T 2 + ) dt
S 2 k 2 A 2 exp 2 ( t t 0 ) 2 T 2 + ( αT ) 2
T det = T 2 + T min 4 T 2
T min 2 α = 1
T det T min 2 T
T min 2 = T 0 T C
Δ S 2 kAB = + exp [ ( t 1 t 0 ) 2 T 2 + i t 1 ( ω ω 0 α t 1 ) ] d t 1 ×
+ exp [ i t 2 ( ω ω 0 α t 2 ) ] d t 2 + c . c .
Δ S 2 exp [ ( t t 0 ) 2 T 2 ]
Δ S 2 sin [ α ( t t 0 ) 2 + π 4 ] exp α 2 T 2 ( t t 0 ) 2
T min = T 0 T C = 10 12 s

Metrics