Abstract

The propagation and the distribution of the optical near field in nanometallic slits are measured by a near-field scanning optical microscope. The optical near field for the p-polarized wave is confined to the middle of the slit. In contrast, the near field for the s-polarized wave is located at the edges. A simulation by the finite-difference time-domain method verifies that the near-field distribution for the s-polarized wave is due to the propagation of the surface plasmon wave (SPW) at the air-metal surface. The existence of the SPW also accounts for the extraordinary transmittance of s-polarized light, which is one order of magnitude larger than that of p-polarized light.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, �??Near-field scanner for moving molecules,�?? Rev. Phys. Lett. 86, 1378-1381 (2001).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Sci. Express 20, (2002).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
    [CrossRef]
  4. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, NewYork, 1998).
  5. A. Taflove and S. C. Hagness, Computational Electrodynamics : the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, �??Breaking the diffraction barrier: optical microscopy on a nanometric scale,�?? Science 251, 1468 (1991).
    [CrossRef] [PubMed]
  7. G. A. Valaskovic, M. Holton, and G. H. Morrison, �??Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,�?? Appl. Opt. 34, 1215-1228 (1995).
    [CrossRef] [PubMed]
  8. P. K.Wei andW. S. Fann, �??Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,�?? J. Appl. Phys. 84, 4655-4660 (1998).
    [CrossRef]
  9. H. A. Beth, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163�??182 (1944).
    [CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

P. K.Wei andW. S. Fann, �??Tip-sample distance regulation for near-field scanning optical microscopy using the bending angle of the tapered fiber probe,�?? J. Appl. Phys. 84, 4655-4660 (1998).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, and T. Thio, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667-669 (1998).
[CrossRef]

Phys. Rev. (1)

H. A. Beth, �??Theory of diffraction by small holes,�?? Phys. Rev. 66, 163�??182 (1944).
[CrossRef]

Rev. Phys. Lett. (1)

J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, �??Near-field scanner for moving molecules,�?? Rev. Phys. Lett. 86, 1378-1381 (2001).
[CrossRef]

Sci. Express (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T.W. Ebbesen, �??Beaming light from a subwavelength aperture,�?? Sci. Express 20, (2002).

Science (1)

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, �??Breaking the diffraction barrier: optical microscopy on a nanometric scale,�?? Science 251, 1468 (1991).
[CrossRef] [PubMed]

Other (2)

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, NewYork, 1998).

A. Taflove and S. C. Hagness, Computational Electrodynamics : the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, 2000).

Supplementary Material (2)

» Media 1: AVI (838 KB)     
» Media 2: AVI (855 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The experimental setup for a collection-mode NSOM

Fig. 2.
Fig. 2.

The measured topographic and NSOM images for 100 nm silt. (a) Topography (left) and s-polarized NSOM image (right). (b) Topography (left) and p-polarized NSOM image (right). (c) The propagation of the optical field for s-polarized light.

Fig. 3.
Fig. 3.

Animation of the propagation of light in a 100 nm metallic slit. (a) TE mode (839k) (b) TM mode (856k).

Fig. 4.
Fig. 4.

The measured topographic and NSOM images for 500 nm silt. (a) Topography (left) and s-polarized NSOM image (right). (b) Topography (left) and p-polarized NSOM image (right). (c) The FDTD simulations of the propagated optical field for s-polarized light (left image) and p-polarized light (right image). The dashed white lines indicate where the NSOM measured.

Metrics