Abstract

We show that a stretched-pulse mode-locked fiber laser produces a well-defined frequency comb, providing a compact source of frequency combs and allowing comb-based optical frequency metrology to be extended into the 1.55 μm region. This is achieved by comparing the frequency doubled output of the fiber laser to that of a mode-locked Ti:Sapphire laser, after the two lasers are synchronized. The offset frequency of the fiber laser frequency comb is found to be highly sensitive to the pump power, which enables the implementation of a feedback loop to control the offset frequency. The resulting RMS frequency jitter of the heterodyne beat signal is 355 kHz (0.5 Hz – 102 kHz BW) for this initial demonstration.

© 2002 Optical Society of America

Full Article  |  PDF Article

Corrections

Jens Rauschenberger, Tar Fortier, David Jones, Jun Ye, and Steven Cundiff, "Control of the frequency comb from a mode-locked Erbium-doped fiber laser: Errata," Opt. Express 11, 1345-1345 (2003)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-11-11-1345

References

  • View by:
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    [CrossRef] [PubMed]
  3. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  4. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
    [CrossRef] [PubMed]
  5. S. T. Cundiff, J. Ye, and J. L. Hall, "Optical Frequency Synthesis based on Modelocked Lasers," Rev. Sci. Instrum. 72, 3746-3771 (2001).
    [CrossRef]
  6. J. D. Jost, J. L. Hall, and J. Ye, "Continuously tunable, precise, single frequency optical signal generator," Opt. Express 10, 515 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-12-515</a>
    [CrossRef] [PubMed]
  7. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, "Controlling the phase evolution of few-cycle light pulses," Phys. Rev. Lett. 85, 740-743 (2000).
    [CrossRef] [PubMed]
  8. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, "Phase-coherent optical pulse synthesis from separate femtosecond lasers," Science 293, 1286-1289 (2001).
    [CrossRef] [PubMed]
  9. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of high-order harmonics in hollow waveguides," Phys. Rev. Lett. 83, 2187-2190 (1999).
    [CrossRef]
  10. P. Dietrich, F. Krausz, and P. B. Corkum, "Determining the absolute carrier phase of a few-cycle pulse," Opt. Lett. 25, 16-18 (2000).
    [CrossRef]
  11. S. Namiki, C. X. Yu, and H. A. Haus, "Observation of nearly quantum-limited timing jitter in an all- fiber ring laser," J. Opt. Soc. Am. B 13, 2817-2823 (1996).
    [CrossRef]
  12. C. X. Yu, S. Namiki, and H. A. Haus, "Noise of the stretched pulse fiber laser .2. Experiments," IEEE J. Quantum Electron. 33, 660-668 (1997).
    [CrossRef]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency control and ultrashort pulse generation," Appl. Phys. B 69, 327 (1999).
    [CrossRef]
  14. A. Onae, T. Ikegami, K. Sugiyama, F. L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
    [CrossRef]
  15. N. Haverkamp, B. Lipphardt, J. Stenger, H. R. Telle, C. Fallnich, and H. Hundertmark, in Conference on Ultrafast Phenomena, Vancouver, BC, 2002), p. ME31-31.
  16. L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A 64, art. no.021802 (2001).
    [CrossRef]
  17. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, "Active synchronization and carrier phase locking of two separate mode-locked femtosecond lasers," J. Mod. Opt. 49, 401-409 (2002).
    [CrossRef]
  18. S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D. 35, R43 (2002).
    [CrossRef]
  19. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  20. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  21. T. M. Fortier, D. J. Jones, J. Ye, S. T. Cundiff, and R. S. Windeler, "Long term carrier-envelope phase coherence of pulses emitted from a modelocked laser," Opt. Lett. 27, 1436-1438 (2002).
    [CrossRef]
  22. R. K. Shelton, S. M. Foreman, L. S. Ma, J. L. Hall, H. C. Kapteyn, M. M. Murnane, M. Notcutt, and J. Ye, "Subfemtosecond timing jitter between two independent, actively synchronized, mode-locked lasers," Opt. Lett. 27, 312-314 (2002).
    [CrossRef]
  23. E. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, "High sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett. 27, 1168 (2002).
    [CrossRef]
  24. R. J. Jones and J. C. Diels, "Stabilization of Femtosecond Lasers for Optical Frequency Metrology and Direct Optical to Radio Frequency Synthesis," Phys. Rev. Lett. 86, 3288-3291 (2001).
    [CrossRef] [PubMed]
  25. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, "Absolute-phase phenomena in photoionization with few-cycle laser pulses," Nature 414, 182-184 (2001).

Appl. Phys. B (2)

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, "Carrier-envelope offset phase control: A novel concept for absolute optical frequency control and ultrashort pulse generation," Appl. Phys. B 69, 327 (1999).
[CrossRef]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. X. Yu, S. Namiki, and H. A. Haus, "Noise of the stretched pulse fiber laser .2. Experiments," IEEE J. Quantum Electron. 33, 660-668 (1997).
[CrossRef]

J. Mod. Opt. (1)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, "Active synchronization and carrier phase locking of two separate mode-locked femtosecond lasers," J. Mod. Opt. 49, 401-409 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D. (1)

S. T. Cundiff, "Phase stabilization of ultrashort optical pulses," J. Phys. D. 35, R43 (2002).
[CrossRef]

Nature (1)

G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, "Absolute-phase phenomena in photoionization with few-cycle laser pulses," Nature 414, 182-184 (2001).

Opt. Commun. (1)

A. Onae, T. Ikegami, K. Sugiyama, F. L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (1)

L.-S. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," Phys. Rev. A 64, art. no.021802 (2001).
[CrossRef]

Phys. Rev. Lett. (6)

R. J. Jones and J. C. Diels, "Stabilization of Femtosecond Lasers for Optical Frequency Metrology and Direct Optical to Radio Frequency Synthesis," Phys. Rev. Lett. 86, 3288-3291 (2001).
[CrossRef] [PubMed]

C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of high-order harmonics in hollow waveguides," Phys. Rev. Lett. 83, 2187-2190 (1999).
[CrossRef]

A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, "Controlling the phase evolution of few-cycle light pulses," Phys. Rev. Lett. 85, 740-743 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, "Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser," Phys. Rev. Lett. 82, 3568-3571 (1999).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. T. Cundiff, J. Ye, and J. L. Hall, "Optical Frequency Synthesis based on Modelocked Lasers," Rev. Sci. Instrum. 72, 3746-3771 (2001).
[CrossRef]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
[CrossRef] [PubMed]

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, "Phase-coherent optical pulse synthesis from separate femtosecond lasers," Science 293, 1286-1289 (2001).
[CrossRef] [PubMed]

Other (1)

N. Haverkamp, B. Lipphardt, J. Stenger, H. R. Telle, C. Fallnich, and H. Hundertmark, in Conference on Ultrafast Phenomena, Vancouver, BC, 2002), p. ME31-31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the setup used for synchronizing an Erbium-doped fiber laser to a KLM Ti:Sapphire laser. Measurement of the offset frequency is obtained by angle tuning the BBO crystal such that it is phase matched for second harmonic generation at 1.5 μm. The optical filter used in the offset frequency measurement is centered at 770 nm. In a similar manner, the measurement of the timing jitter used the BBO crystal for sum frequency generation and an optical filter centered at 520 nm was used to detect the sum frequency mixed light arising from the fiber and Ti:S laser pulses.

Fig 2.
Fig 2.

Optical spectrum of the Erbium-doped fiber laser output

Fig. 3.
Fig. 3.

Timing jitter time record of the synchronization of an Erbium-doped fiber laser to a KLM Ti:S laser. The trace was recorded at 0.4 ms time steps. The RMS timing jitter of 12.4 fs (0.5 Hz – 2.5 kHz BW) was obtained from the standard deviation of this 2 s time record. The modulation seen on the time record at ~20 Hz has not yet been identified. Elimination of this modulation would result in a substantial improvement of the timing measurement.

Fig. 4.
Fig. 4.

Fiber laser offset frequency noise PSD, Sfo (ν) (solid lines, left axis) and integrated frequency noise (dotted lines, right axis) vs. frequency offset from carrier. The blue (red) solid line is the PSD of the unlocked (locked) offset frequencies, respectively. The unlocked and locked PSD’s were compiled from three different spectra of decreasing span (each 800 points) and increasing resolution (span divided by the number of points) to obtain greater resolution close to the carrier (displayed here as zero frequency).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f beat = ± ( m f rep 1 2 n f rep 2 ) + ( f o 1 2 f o 2 ) + f AOM .

Metrics