Abstract

A numerical model is presented for the analysis of vectorial two-beam coupling in photorefractive materials. A powerful software tool has been developed for design purposes. For Fe,Ce-doped lithium niobate crystals, conversion efficiency and signal gain dependences on experimental parameters and beam polarization have been found. The good accuracy of the model has been demonstrated by comparisons with experimentally measured parameters.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. B. Fischer, M. Cronin-Golomb, J. O. White, A. Yariv, �??Nonlinear vectorial two-beam coupling and forward four-wave mixing in photorefractive materials,�?? Opt. Lett. 11, 239-241 (1986).
    [CrossRef]
  2. J. Feinberg, K. R. MacDonald, �??Phase-conjugate mirrors and resonators with photorefractive materials,�?? in Photorefractive Materials and their applications II, 151-203 (Springer-Verlag, Berlin, 1988).
  3. C. Yang, Y. Zhao, R. Wang, M. Li, �??Studies of photorefractive crystals of double-doped Ce,Fe:LiNbO3,�?? Opt. Commun. 175, 247-252 (2000).
    [CrossRef]
  4. J. O. White, S. K. Kwong, M. Cronin-Golomb, B. Fischer, A. Yariv, �??Wave propagation in photorefractive media,�?? in Photorefractive Materials and their applications II, 101-150 (Springer-Verlag, Berlin, 1988).
  5. P. Gunter, J. P. Huignard, �??Photorefractive effects and materials,�?? in Photorefractive Materials and their applications I, 7-74 (Springer-Verlag, Berlin, 1988).
    [CrossRef]

Opt. Commun. (1)

C. Yang, Y. Zhao, R. Wang, M. Li, �??Studies of photorefractive crystals of double-doped Ce,Fe:LiNbO3,�?? Opt. Commun. 175, 247-252 (2000).
[CrossRef]

Opt. Lett. (1)

Other (3)

J. Feinberg, K. R. MacDonald, �??Phase-conjugate mirrors and resonators with photorefractive materials,�?? in Photorefractive Materials and their applications II, 151-203 (Springer-Verlag, Berlin, 1988).

J. O. White, S. K. Kwong, M. Cronin-Golomb, B. Fischer, A. Yariv, �??Wave propagation in photorefractive media,�?? in Photorefractive Materials and their applications II, 101-150 (Springer-Verlag, Berlin, 1988).

P. Gunter, J. P. Huignard, �??Photorefractive effects and materials,�?? in Photorefractive Materials and their applications I, 7-74 (Springer-Verlag, Berlin, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Vectorial two-beam coupling geometry.

Fig. 2.
Fig. 2.

Conversion efficiency dependence on crossing angle.

Fig. 3.
Fig. 3.

Conversion efficiency dependence on crossing angle.

Fig. 4.
Fig. 4.

Signal gain dependence on crossing angle.

Fig. 5.
Fig. 5.

Signal gain dependence on crossing angle.

Tables (1)

Tables Icon

Table 1. Comparisons among experimental [3] and numerical values of two-beam coupling gain coefficient Γ.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{ d A 1 dz = γ I g A 4 γ II g A 3 α A 1 d A 2 dz = γ I g A 3 γ II g A 4 α A 2 d A 3 * dz = γ I g A 2 * γ II g A 1 * α A 3 * d A 4 * dz = γ I g A 1 * γ II g A 2 * α A 4 *
A i = Re { A i } + j Im { A i } i = 1,2,3,4
g = Re { g } + j Im { g } =
= ( Re { A 1 } Re { A 4 } + Im { A 1 } Im { A 4 } + Re { A 2 } Re { A 3 } + Im { A 2 } Im { A 3 } ) +
+ j ( Re { A 4 } Im { A 1 } Re { A 1 } Im { A 4 } + Re { A 3 } Im { A 2 } Re { A 2 } Im { A 3 } )
γ p = 4 π λ k B T q r eff n cos [ ϑ 1 + ϑ 2 2 ] · K ¯ 1 + ( K ¯ k o ) 2 e 1 g e 2 * p = I , II
k 0 = 4 π N eff q 2 ε 0 ε rK k B T
r eff = 1 n 4 e 1 * · { ε 0 0 [ r 0 0 ( K ¯ K ¯ ) ] · ε 0 0 } · e 2
Λ = λ 2 n sin ( ϑ C 2 )

Metrics