Abstract

In this paper, a number of critical aspects in the design and performance of guided-wave grating-assisted tunable filters for dense telecommunications systems are investigated by using a rigorous numerical approach. It is shown how highly narrow filters, with the potential to be tunable over a large number of channels (> 50), can be accurately designed by using well-selected apodization windows.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. R. Doerr, M. Zirngibl, C. H. Joyner, L. W. Stulz, and H.M. Presby, �??Polarization DiversityWaveguide Grating Receiver with Integrated Optical Preamplifiers,�?? IEEE Photon. Tech. Lett. 9, 85-87 (1997).
    [CrossRef]
  2. J. Sapriel, D. Charissoux, V. Voloshinov and V. Molchanov, �??Tunable Acoustooptic Filters and Equalizers for WDM Applications,�?? J. Lightwave Technol. 20, 864-871 (2002).
    [CrossRef]
  3. H. Sakata, �??Sidelobe suppression in grating-assisted wavelength-selective couplers,�?? Opt. Lett. 17, 463-465 (1992).
    [CrossRef] [PubMed]
  4. R. C. Alferness and P. S. Cross, �??Filter characteristics of codirectionally coupled waveguides with weighted coupling,�?? IEEE J. Quantum Electron. QE-14, 843-847 (1978).
    [CrossRef]
  5. B. E. Little, C. Wu, and W.-P. Huang, �??Synthesis of codirectional couplers with ultralow sidelobes and minimum bandwidth,�?? Opt. Lett. 20, 1259-1261 (1995).
    [CrossRef] [PubMed]
  6. W. P. Huang, J. Hong, and Z. M. Mao, �??Improved coupled-mode formulation based on composite modes for parallel grating-assisted co-directional couplers,�?? IEEE J. Quantum Electron. 29, 2805-2812 (1993).
    [CrossRef]
  7. V. M. N. Passaro and M. N. Armenise, �??Analysis of Radiation Loss in Grating-Assisted Codirectional Couplers,�?? IEEE J. Quantum Electron. 31, 1691-1697 (1995).
    [CrossRef]
  8. N. -H. Sun, J. K. Butler, G. A. Evans, L. Pang, and P. Congdon, �??Analysis of Grating-Assisted Directional Couplers Using the Floquet-Bloch Theory,�?? J. Lightwave Technol. 15, 2301-2314 (1997).
    [CrossRef]
  9. V. M. N. Passaro, �??Optimal Design of Grating-Assisted Directional Couplers,�?? J. Lightwave Technol. 18, 973-984 (2000).
    [CrossRef]
  10. Yu-H. Jan, G. A. Fish, L. A. Coldren, S. P. DenBaars, �??Widely tunable integrated filter/receiver with apodized grating-assisted codirectional coupler,�?? Proc. SPIE 3290, 258-261 (1997).
    [CrossRef]
  11. Yu-H. Jan, G. A. Fish, L. A. Coldren, S. P. DenBaars, �??Demonstration of InP-InGaAsP Vertical Grating-Assisted Codirectional Coupler Filters and Receivers with Tapered Coupling Coefficient Distributions,�?? IEEE Photon. Tech. Lett. 9, 994-996 (1997).
    [CrossRef]
  12. BeamProp by Rsoft Inc., 1999.

IEEE J. Quantum Electron. (3)

R. C. Alferness and P. S. Cross, �??Filter characteristics of codirectionally coupled waveguides with weighted coupling,�?? IEEE J. Quantum Electron. QE-14, 843-847 (1978).
[CrossRef]

W. P. Huang, J. Hong, and Z. M. Mao, �??Improved coupled-mode formulation based on composite modes for parallel grating-assisted co-directional couplers,�?? IEEE J. Quantum Electron. 29, 2805-2812 (1993).
[CrossRef]

V. M. N. Passaro and M. N. Armenise, �??Analysis of Radiation Loss in Grating-Assisted Codirectional Couplers,�?? IEEE J. Quantum Electron. 31, 1691-1697 (1995).
[CrossRef]

IEEE Photon. Tech. Lett. (2)

C. R. Doerr, M. Zirngibl, C. H. Joyner, L. W. Stulz, and H.M. Presby, �??Polarization DiversityWaveguide Grating Receiver with Integrated Optical Preamplifiers,�?? IEEE Photon. Tech. Lett. 9, 85-87 (1997).
[CrossRef]

Yu-H. Jan, G. A. Fish, L. A. Coldren, S. P. DenBaars, �??Demonstration of InP-InGaAsP Vertical Grating-Assisted Codirectional Coupler Filters and Receivers with Tapered Coupling Coefficient Distributions,�?? IEEE Photon. Tech. Lett. 9, 994-996 (1997).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Lett. (2)

Proc. SPIE (1)

Yu-H. Jan, G. A. Fish, L. A. Coldren, S. P. DenBaars, �??Widely tunable integrated filter/receiver with apodized grating-assisted codirectional coupler,�?? Proc. SPIE 3290, 258-261 (1997).
[CrossRef]

Other (1)

BeamProp by Rsoft Inc., 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Architectural scheme of one-stage GADC filter.

Fig. 2.
Fig. 2.

(a) Normalized k (cm-1) versus the grating duty cycle: rectangular (yellow); trapezoidal (blue); triangular (red); asymmetric triangular (black). (b) Normalized k versus the grating length (mm) for different apodization windows (yellow: uniform; blue: Hamming; black: Blackman; green: Gaussian; wider black line: Raised-cosine).

Fig. 3.
Fig. 3.

Scheme of two stage grating-assisted filter.

Fig. 4.
Fig. 4.

(a) Coupling efficiency (dB) versus the wavelength (nm) for different filter apodizations: Tri=Triangular (red); Blac=Blackman (black); Rect= uniform (yellow); Hamming (green); Hanning (blue). (b) Coupling efficiency (dB) as a function of a tuned wavelength in case of triangular window by CMT (red line) and LMP (black line). GADC length is L = 1 mm.

Fig. 5.
Fig. 5.

Field distribution inside the GADC filter transverse section.

Tables (1)

Tables Icon

Table I. Characteristic parameters for various apodizations (L = 1 mm for each stage).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k = ω ε o 8 t g E A * Δ n g 2 E B dx
Δ n g 2 = ( n g 2 n o 2 ) π sin ( π w Λ )
k = ω ε o 8 ( n g 2 n o 2 ) [ t g f 1 A * c 0 f 0 B dx + t g f 0 A * c 0 f + 1 B dx + t g f 0 A * c 1 f 0 B dx + t g f 1 A * c 1 f + 1 B dx ]

Metrics