Abstract

We show how to design a round optical fiber so that it is effectively single moded, with no polarization degeneracy. Such fibers would be free from the consequences of polarization degeneracy or near degeneracy – phenomena such as polarization fading in interferometry, and polarization mode dispersion – and so may offer an alternative to polarization maintaining fibers for the avoidance of these phenomena. The design presented builds on an earlier observation of polarization selective refection in Bragg fibers.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196 (1978).
    [CrossRef]
  4. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  5. C. M. de Sterke, I. M. Bassett and A. G. Street, �??Differential losses in Bragg fibres,�?? J. Appl. Phys. 76, 680 (1994).
    [CrossRef]
  6. A. Ferrando and J. J. Miret, �??Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,�?? Appl. Phys. Lett. 78, 3184-3186 (2001).
    [CrossRef]
  7. W. C. Chew, Waves and fields in inhomogeneous media, Chapter 3 (Van Nostrand Reinhold, New York, 1990).
  8. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, M. C.J. Large, J. Zagari, N. A. P. Nicorovici, R. C. McPhedran and C. M. de Sterke, �??Ring structures in microstructured polymer optical fibres,�?? Opt. Express 9, 813 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-813</a>.
    [CrossRef] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics, Chapter 1.6 (Pergamon Press, Oxford, 1980).
  10. S. G. Johnson et al., �??Low-loss asymptotically single-mode propagation in large-core Omniguide fibers,�?? Opt. Express 9, 748-779, (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a>.
    [CrossRef] [PubMed]

Appl. Phys. Lett.

A. Ferrando and J. J. Miret, �??Single-polarization single-mode intraband guidance in supersquare photonic crystals fibers,�?? Appl. Phys. Lett. 78, 3184-3186 (2001).
[CrossRef]

J. Appl. Phys.

C. M. de Sterke, I. M. Bassett and A. G. Street, �??Differential losses in Bragg fibres,�?? J. Appl. Phys. 76, 680 (1994).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

Phys. Rev. Lett.

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, Chapter 1.6 (Pergamon Press, Oxford, 1980).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

W. C. Chew, Waves and fields in inhomogeneous media, Chapter 3 (Van Nostrand Reinhold, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig.1.
Fig.1.

Schematic refractive index profiles of (a) a step index fiber, and (b) a Bragg fiber.

Fig. 2.
Fig. 2.

Schematic of the electric field in the hybrid, TE, and TM modes of a round waveguide.

Fig. 3.
Fig. 3.

Relationship between the propagation constant and the transverse wavenumber in a medium of refractive index n1, and illustration of the Brewster angle of incidence at a plane boundary.

Tables (3)

Tables Icon

Table 1a. Key modal properties of TE Bragg fiber A

Tables Icon

Table 1b. Key modal properties of TE Bragg fiber B

Tables Icon

Table 2. Key modal properties of a Bragg fiber (defined in reference [10])

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β k = n eff = n 1 n 2 n 1 2 + n 2 2 .
n 1 < n 2 n co n 2 2 + n co 2 and n 2 < n 1 n co n 1 2 n co 2 ,
min ( n 1 , n 2 ) < 2 n co .

Metrics