Abstract

We report the first measurements of spontaneous Raman scattering from silicon waveguides. Using a 1.43 μm pump, both forward and backward scattering were measured at 1.54 μm from Silicon-On-Insulator (SOI) waveguides. From the dependence of the Stokes power vs. pump power, we extract a value of (4.1 ± 2.5) × 10-7 cm-1 Sr-1 for the Raman scattering efficiency. The results suggest that a silicon optical amplifier is within reach. The strong optical confinement in silicon waveguides is an attractive property as it lowers the pump power required for the onset of Raman scattering. The SiGe material system is also discussed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. James B. Kuo and Shih-Chia Lin, Low voltage SOI CMOS VLSI circuits and devices (John Wiley and Sons, Incorporated, 2001).
  2. M. Naydenkov, B. Jalali; Proceedings of the IEEE International SOI Conference, p. 56, Rohnert Park, CA, October 1999.
  3. S.W. Roberts, G. Pandraud, B.J. Luff, C. Bowden, P.J. Annetts, R.J. Bozeat, S. Fuller, J. Drake, M. Jackson, M. Asghari; paper 08000, NFOEC, Denver, CO, 2000.
  4. M. Naydenkov, B. Jalali; Proceedings of the SPIE , Photonics West Conference, Vol. 3936, p. 33, San Jose, CA, January 2000.
  5. J.M. Ralston, R.K. Chang; �??Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon,�?? Phys. Rev. B 2 1858-1862 (1970).
    [CrossRef]
  6. P. A. Temple, C. E. Hathaway, �??Multiphonon Raman Spectrum of Silicon,�?? Phys. Rev. B 7 3685-3697 (1973).
    [CrossRef]
  7. M. Cardona, �??Resonance Phenomena,�?? in Topics in Appl. Phys. V. 50: Light Scattering in Solids II, M. Cardona, G. Guntherodt, ed. (Springer-Verlag, Berlin, 1982).
    [CrossRef]
  8. T. Saito, K. Suto, J. Nishizawa, M. Kawasaki, �??Spontaneous Raman scattering in [100], [110] and [11-2] directional GaP waveguides,�?? J. Appl. Phys. 90 1831-1835 (2001).
    [CrossRef]
  9. D. Dimitropoulos, R. Claps, B. Jalali; �??Prospects for Raman amplification in silicon waveguides,�?? to be presented at the Materials Research Society Fall meeting (MRS), December 6th (2002), Boston, MA. IEE Paper No.54465.
  10. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F. Coppinger; �??Advances in Silicon-on-Insulator optoelectronics,�?? IEEE J. Sel. Top. Quantum Electron. (Special Issue on Silicon-based Optoelectronics). 4, 938-947.
  11. Spectra-Physics Telecom: �??Model RL5 Raman Fiber Laser Specifications.�??
  12. R.G. Smith; �??Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,�?? Appl. Opt. 68 2489-2494 (1972).
    [CrossRef]
  13. R.H. Stolen, E.P. Ippen; �??Raman gain in glass optical waveguides,�?? Appl. Phys. Lett. 22 276-278 (1973).
    [CrossRef]
  14. A.P.R. Harpin, A.G. Rickman, R.J.R. Morris, M. Asghari; US Pat. No. 6,108,478 08/22/2000. Patent: Adiabatic Taper. Company: Bookham Technology, UK.
  15. R.A. Soref; �??Nonlinear refractive Index of IV-IV compound semiconductors,�?? Appl. Opt. 31, 4627-4629 (1992).
    [CrossRef]
  16. R. Claps, D. Dimitropoulos, B. Jalali; �??Stimulated Raman Scattering in SiliconWaveguides,�?? Electron. Lett. IEE (accepted for publication, October 2002). Paper No. ELL 34761.
  17. J.H. Parker, Jr., D.W. Feldman, M. Ashkin, �??Raman Scattering by Silicon and Germanium,�?? Phys. Rev. 155, 712-714 (1967).
    [CrossRef]

Appl. Opt. (2)

R.G. Smith; �??Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,�?? Appl. Opt. 68 2489-2494 (1972).
[CrossRef]

R.A. Soref; �??Nonlinear refractive Index of IV-IV compound semiconductors,�?? Appl. Opt. 31, 4627-4629 (1992).
[CrossRef]

Appl. Phys. Lett. (1)

R.H. Stolen, E.P. Ippen; �??Raman gain in glass optical waveguides,�?? Appl. Phys. Lett. 22 276-278 (1973).
[CrossRef]

Electron. Lett. (1)

R. Claps, D. Dimitropoulos, B. Jalali; �??Stimulated Raman Scattering in SiliconWaveguides,�?? Electron. Lett. IEE (accepted for publication, October 2002). Paper No. ELL 34761.

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, F. Coppinger; �??Advances in Silicon-on-Insulator optoelectronics,�?? IEEE J. Sel. Top. Quantum Electron. (Special Issue on Silicon-based Optoelectronics). 4, 938-947.

J. Appl. Phys. (1)

T. Saito, K. Suto, J. Nishizawa, M. Kawasaki, �??Spontaneous Raman scattering in [100], [110] and [11-2] directional GaP waveguides,�?? J. Appl. Phys. 90 1831-1835 (2001).
[CrossRef]

Phys. Rev. (1)

J.H. Parker, Jr., D.W. Feldman, M. Ashkin, �??Raman Scattering by Silicon and Germanium,�?? Phys. Rev. 155, 712-714 (1967).
[CrossRef]

Phys. Rev. B (2)

J.M. Ralston, R.K. Chang; �??Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon,�?? Phys. Rev. B 2 1858-1862 (1970).
[CrossRef]

P. A. Temple, C. E. Hathaway, �??Multiphonon Raman Spectrum of Silicon,�?? Phys. Rev. B 7 3685-3697 (1973).
[CrossRef]

Other (8)

M. Cardona, �??Resonance Phenomena,�?? in Topics in Appl. Phys. V. 50: Light Scattering in Solids II, M. Cardona, G. Guntherodt, ed. (Springer-Verlag, Berlin, 1982).
[CrossRef]

D. Dimitropoulos, R. Claps, B. Jalali; �??Prospects for Raman amplification in silicon waveguides,�?? to be presented at the Materials Research Society Fall meeting (MRS), December 6th (2002), Boston, MA. IEE Paper No.54465.

James B. Kuo and Shih-Chia Lin, Low voltage SOI CMOS VLSI circuits and devices (John Wiley and Sons, Incorporated, 2001).

M. Naydenkov, B. Jalali; Proceedings of the IEEE International SOI Conference, p. 56, Rohnert Park, CA, October 1999.

S.W. Roberts, G. Pandraud, B.J. Luff, C. Bowden, P.J. Annetts, R.J. Bozeat, S. Fuller, J. Drake, M. Jackson, M. Asghari; paper 08000, NFOEC, Denver, CO, 2000.

M. Naydenkov, B. Jalali; Proceedings of the SPIE , Photonics West Conference, Vol. 3936, p. 33, San Jose, CA, January 2000.

Spectra-Physics Telecom: �??Model RL5 Raman Fiber Laser Specifications.�??

A.P.R. Harpin, A.G. Rickman, R.J.R. Morris, M. Asghari; US Pat. No. 6,108,478 08/22/2000. Patent: Adiabatic Taper. Company: Bookham Technology, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup for measurement of spontaneous Raman scattering from silicon waveguides.

Fig. 2.
Fig. 2.

SOI Waveguide used. The (x, y, z) coordinates are oriented along the crystallographic axes. The resulting TM0 mode (λ=1.54 μm) from a BPM calculation is depicted to the right. The effective index of refraction is calculated assuming n=3.5 for bulk silicon.

Fig. 3.
Fig. 3.

Raman spectra from silicon obtained for different horizontal offsets of the waveguide relative to the optical axis. Fig. 3a shows the back-scattered spectra, and Fig. 3b shows the forward-scattered spectra.

Fig. 4.
Fig. 4.

Measured profiles of the Raman emission from the SOI waveguide in horizontal (∥ or x in Fig. 2), and vertical (⊥ or y in Fig. 2) directions. The corresponding TM0 mode profiles, calculated using BPM simulations, are super-imposed for comparison. Dashed lines are Gaussian fits to the data.

Fig. 5.
Fig. 5.

Raman spectra measured for different values of pump power.

Fig. 6.
Fig. 6.

Spontaneous Raman intensity as a function of pump power. Forward and backward scattering cases are shown. The pump power was measured between the PBS and the input coupling lens.

Tables (1)

Tables Icon

Table 1. Scattering efficiencies for different configurations in silicon. [100], [010], and [001] refer to the crystallographic directions, x, y, and z, respectively [7].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P P ( z ) = P P ( 0 ) e γz .
dP R ( z ) dz = γ P R ( z ) ± α P P ( z ) .
α = S ΔΩ .
Backward : P R = α { 1 e 2 γL 2 γ } P P .
Forward : P R = αL e γL P P .
m = sinh ( γL ) γL
P R ( L ) = P R ( 0 ) exp ( γ L + g s S p ( 0 ) γ ( 1 exp ( γ L ) ) ) .
g s = 8 π c 2 ω p ħ ω s 4 n 2 ( ω s ) ( N + 1 ) Δ ω S .

Metrics