Abstract

We demonstrate an automatic tunable transversal notch filter based on uniform fiber Bragg gratings and a broadband optical source. High tunability can be performed by stretching the fiber with the gratings written in series. Also, high sidelobe supression can be achieved by introducing tunable attenuators in a parallel configuration of the gratings.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Osawa, N. Wada, K. Kitayama, W. Chujo, �??Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,�?? Electron. Lett. 37, 1356-1357 (2001).
    [CrossRef]
  2. D. B. Hunter, R. A. Minasian, P A. Krug, �??Tunable optical transversal filter based on chirped gratings,�?? Electron. Lett. 31, 2205-2207 (1995).
    [CrossRef]
  3. J. Capmany, D. Pastor, B. Ortega, �??New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,�?? IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
    [CrossRef]
  4. W. Zhang, J. A. R. Williams, L. A. Everall, I. Bennion, �??Fibre optic radio frequency notch filter with linear and continuous tuning by using a chirped fibre grating,�?? Electron. Lett. 34, 1770-1772 (1998).
    [CrossRef]
  5. G. Yu, W. Zhang, J. A. R. Williams, �??High-performance microwave transversal filter using fiber Bragg grating arrays,�?? IEEE Photonics Technol. Lett. 12, 1183-1185 (2000).
    [CrossRef]
  6. J. Capmany, D. Pastor, B. Ortega, �??Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe supression using subnanometre optical spectrum slicing,�?? Electron. Lett. 35, 494-496 (1999).
    [CrossRef]
  7. D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martínez, P. Muñoz, �??Flexible and tunable microwave filters based on arrayed waveguide gratings,�?? accepted to Microwave Photonics 2002, MWP�??02. Japan, November 2002.
  8. D. Pastor, J. Capmany, B. Ortega, �??Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,�?? IEEE Photonics Technol. Lett. 13, 726 �??728 (2001).
    [CrossRef]
  9. W. Zhang, J. A. R. Williams, I. Bennion, �??Polarization sythesized optical transversal filter employing high birefringence fiber gratings,�?? IEEE Photonics Technol. Lett. 13, 523-525 (2001).
    [CrossRef]
  10. J. Mora, B. Ortega, M. V. Andres, J. Capmany, D. Pastor, J. L. Cruz, S. Sales, �??Dynamic optical transversal filters based on a tunable dispersion fiber Bragg grating,�?? in International Topical Meeting on Microwave Photonics 2001, MWP '01, 203 �??206 (2001).

Electron. Lett.

S. Osawa, N. Wada, K. Kitayama, W. Chujo, �??Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,�?? Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

D. B. Hunter, R. A. Minasian, P A. Krug, �??Tunable optical transversal filter based on chirped gratings,�?? Electron. Lett. 31, 2205-2207 (1995).
[CrossRef]

W. Zhang, J. A. R. Williams, L. A. Everall, I. Bennion, �??Fibre optic radio frequency notch filter with linear and continuous tuning by using a chirped fibre grating,�?? Electron. Lett. 34, 1770-1772 (1998).
[CrossRef]

J. Capmany, D. Pastor, B. Ortega, �??Fibre optic microwave and millimetre-wave filter with high density sampling and very high sidelobe supression using subnanometre optical spectrum slicing,�?? Electron. Lett. 35, 494-496 (1999).
[CrossRef]

IEEE Photonics Technol. Lett.

D. Pastor, J. Capmany, B. Ortega, �??Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,�?? IEEE Photonics Technol. Lett. 13, 726 �??728 (2001).
[CrossRef]

W. Zhang, J. A. R. Williams, I. Bennion, �??Polarization sythesized optical transversal filter employing high birefringence fiber gratings,�?? IEEE Photonics Technol. Lett. 13, 523-525 (2001).
[CrossRef]

G. Yu, W. Zhang, J. A. R. Williams, �??High-performance microwave transversal filter using fiber Bragg grating arrays,�?? IEEE Photonics Technol. Lett. 12, 1183-1185 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

J. Capmany, D. Pastor, B. Ortega, �??New and flexible fiber-optic delay-line filters using chirped Bragg gratings and laser arrays,�?? IEEE Trans. Microwave Theory Tech. 47, 1321-1326 (1999).
[CrossRef]

Other

J. Mora, B. Ortega, M. V. Andres, J. Capmany, D. Pastor, J. L. Cruz, S. Sales, �??Dynamic optical transversal filters based on a tunable dispersion fiber Bragg grating,�?? in International Topical Meeting on Microwave Photonics 2001, MWP '01, 203 �??206 (2001).

D. Pastor, B. Ortega, J. Capmany, S. Sales, A. Martínez, P. Muñoz, �??Flexible and tunable microwave filters based on arrayed waveguide gratings,�?? accepted to Microwave Photonics 2002, MWP�??02. Japan, November 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Setup of the flexible uniform FBG-based RF filter. Inset: Reflectivity of the uniform gratings.

Fig. 2.
Fig. 2.

Spectral position of the reflectivity peaks (filter taps) when the fiber is stretched.

Fig. 3.
Fig. 3.

Tunability of the RF-filters. Experimental (black: filter 1, blue: filter 2) and calculated (green: filter1, red: filter 2) filter response versus RF signal frequency with different spectral spacing between taps.

Fig. 4.
Fig. 4.

Free spectral range of the RF filters dependence on the reciprocal of the wavelength spacing between taps. Theoretical calculation (solid line) and experimental results (●, 4 taps-based filter; ■, 3 taps-based filter).

Fig. 5.
Fig. 5.

System configuration for reconfigurable sidelobe supression.

Fig. 6.
Fig. 6.

Calibration curve of sidelobe supression versus attenuation tuning parameter. Insets: intensity of the taps in different filters.

Fig. 7.
Fig. 7.

Reconfigurable sidelobe supression of the RF-filters. Experimental (solid line) and calculated (dashed line) filters response with different extinctio ratios: (a) 6.9 dB, (b) 12.1 dB and (c) 17.5 dB.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ λ N = λ initN ( 1 p e ) Δ L L N
Δ λ N N · Δ L
L N = L N ,
H RF ( Ω ) = N = 0 3 A N [ + R N ( ω ) e Ω ω ] e j Ω τ N
δω max = Δ ω max N
1 f notch = βδ max = β Δ ω max N
1 f notch [ βδω 3 d B , Δ ω max N ]

Metrics