Abstract

We observe the dropping of electromagnetic waves having a specific frequency or a certain frequency band in two-dimensional dielectric photonic crystals. The single frequency is dropped via cavity-waveguide coupling. Tunability of the demultiplexing mode can be achieved by modifying the cavity properties. The band-dropping phenomenon is achieved by introducing interaction between an input planar, or coupled-cavity, waveguide and the output coupled-cavity waveguides (CCWs). The dropping band can be tuned by changing the coupling strength between the localized cavity modes of the output CCWs. We also calculate the transmission spectra and the field patterns by using the finite-difference-time-domain (FDTD)method. Calculated results agree well with the microwave measurements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press,Princeton, NJ, 1995).
  2. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dortrecht, 2001).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787�??3790 (1996).
    [CrossRef] [PubMed]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,�?? Phys. Rev. B 61, R11855�??R11858 (2000).
    [CrossRef]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937�??1939 (2000).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two dimensional photonic band-gap defect mode laser,�?? Science 284, 1819�??1821 (1999).
    [CrossRef] [PubMed]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,�?? Science 293, 1123�??1125 (2001).
    [CrossRef] [PubMed]
  8. J. Yonekura, M. Ikeda, and T. Baba, �??Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,�?? J. Lightwave Technol. 17, 1500�??1508 (1999).
    [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Photonic crystal based beam splitters,�?? Appl. Phys. Lett. 77, 3902�??3904 (2000).
    [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476�??1479 (1998).
    [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,�?? Appl. Phys. Lett. 74, 1370�??1372 (1999).
    [CrossRef]
  12. A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, �??Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,�?? Appl. Phys. Lett. 75, 1625�??1627 (1999).
    [CrossRef]
  13. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, �??Single-mode waveguide microcavity for fast optical switching,�?? Opt. Lett. 21, 2017�??2019 (1996).
    [CrossRef] [PubMed]
  14. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop tunneling through localized states,�?? Phys. Rev. Lett. 80, 960�??963 (1998).
    [CrossRef]
  15. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608�??610 (2000).
    [CrossRef] [PubMed]
  16. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, �??Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,�?? Opt. Lett. 25, 1502�??1504 (2000).
    [CrossRef]
  17. S. S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, �??Duplexer using microwave photonic band gap structure,�?? Appl. Phys. Lett. 76, 2301�??2303 (2000).
    [CrossRef]
  18. M. Koshiba, �??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,�?? J. Lightwave Technol. 19, 1970�??1975 (2001).
    [CrossRef]
  19. A. Sharkawy, S. Shi, and D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247�??2252 (2001).
    [CrossRef]
  20. C. Jin, S. Han, X. Meng, B. Cheng, and D.Zhang, �??Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,�?? J. Appl. Phys. 91, 4771�??4773 (2002).
    [CrossRef]
  21. M. Bayindir and E. Ozbay, �??Dropping of electromagnetic waves through localized modes in three dimensional photonic band gap structures,�?? Submitted to Appl. Phys. Lett.
  22. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, �??Investigation of localized coupled-cavity modes in two-dimensional photonic band gap structures,�?? IEEE J. Quantum Electron. 38, 837�??843 (2002).
    [CrossRef]
  23. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140�??2143 (2000).
    [CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Bayindir and E. Ozbay, �??Dropping of electromagnetic waves through localized modes in three dimensional photonic band gap structures,�?? Submitted to Appl. Phys. Lett.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937�??1939 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, �??Photonic crystal based beam splitters,�?? Appl. Phys. Lett. 77, 3902�??3904 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,�?? Appl. Phys. Lett. 74, 1370�??1372 (1999).
[CrossRef]

A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, �??Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,�?? Appl. Phys. Lett. 75, 1625�??1627 (1999).
[CrossRef]

S. S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, �??Duplexer using microwave photonic band gap structure,�?? Appl. Phys. Lett. 76, 2301�??2303 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, �??Investigation of localized coupled-cavity modes in two-dimensional photonic band gap structures,�?? IEEE J. Quantum Electron. 38, 837�??843 (2002).
[CrossRef]

J. Appl. Phys. (1)

C. Jin, S. Han, X. Meng, B. Cheng, and D.Zhang, �??Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,�?? J. Appl. Phys. 91, 4771�??4773 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608�??610 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Bayindir, B. Temelkuran, and E. Ozbay, �??Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,�?? Phys. Rev. B 61, R11855�??R11858 (2000).
[CrossRef]

Phys. Rev. Lett. (3)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787�??3790 (1996).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop tunneling through localized states,�?? Phys. Rev. Lett. 80, 960�??963 (1998).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140�??2143 (2000).
[CrossRef] [PubMed]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476�??1479 (1998).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two dimensional photonic band-gap defect mode laser,�?? Science 284, 1819�??1821 (1999).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,�?? Science 293, 1123�??1125 (2001).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press,Princeton, NJ, 1995).

C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dortrecht, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dropping of electromagnetic waves in two-dimensional photonic crystals. (a) Schematic drawing of a single-frequency dropping structure. A selected frequency can be dropped from the guided mode inside the waveguide due to coupling between the cavity and the waveguide mode. The tunability of the dropping frequency can be achieved by changing radius of the rods at the cavity sites. (b) The proposed band-demultiplexing structure. Photons having a certain frequency band inside the input waveguide can be filtered through the output coupled-cavity waveguides.

Fig. 2.
Fig. 2.

Filtering of a selected frequency via cavity-planar waveguide coupling. [Left panel] (a) Calculated and (b) measured transmission spectra, A → C, corresponding to the single-frequency demultiplexing structures for various values of r c = 0 (blue line), r c = 0.32r 0 (green line), and r c = 048r 0 (red line). Tunability of the dropping frequencies can be achieved by changing radius of the rods at the cavity sites. The waveguide spectrum (black line, A → B) exhibits corresponding dips exactly at the resonance frequency of cavities. [Right panel] Calculated field pattern at the resonance frequency of the cavity C2. The electric field distribution clearly shows the filtering of cavity mode from the waveguide mode.

Fig. 3.
Fig. 3.

Filtering of a selected frequency via cavity-coupled cavity waveguide coupling. [Left panel] (a) Calculated and (b) measured transmission spectra corresponding to the single-frequency demultiplexing structures for various values of r c =0 (blue line), r c = 0.32r 0 (green line), and r c = 048r 0 (red line). The black line represents the corresponding transmission spectrum of the coupled-cavity waveguide. [Right panel] Calculated field pattern at the resonance frequency of the cavity C2.

Fig. 4.
Fig. 4.

Band-dropping from an input planar waveguide through output coupled-cavity waveguides. [Left panel] (a) Calculated (b) measured transmission spectra corresponding to the band-demultiplexing structure which contains two CCWs with the cavity rod radius r c = 0.32r 0 (blue line) and r c = 0.64r 0 (red line). [Right panel] Calculated field distribution for frequency f = 0.369c/a.

Fig. 5.
Fig. 5.

Band-dropping from an input coupled-cavity waveguide through output coupled-cavity waveguides. [Left panel] (a) Calculated (b) measured transmission spectra corresponding to the band-demultiplexing structure which contains two CCWs with the cavity rod radius r c = 0.32r 0 (blue line) and r c = 0.64r 0 (red line). [Right panel] Calculated field distribution for frequency f = 0.363c/a.

Metrics