Abstract

We report, the first time to our knowledge, an observation of optical bistability in a Vertical-Cavity Semiconductor Optical Amplifier (VCSOA) operated in reflection mode. Counterclockwise hysteresis loops are obtained over a range of initial phase detuning and bias currents. One hysteresis loop is observed experimentally with an input power as low as 2 μW when the device is biased at 98% of its lasing threshold. We also numerically simulate the optical bistability and obtain good agreement with our experimental observations. Bistable VCSOAs significantly advances the prospect of dense 2-D array of low switching-intensity all-optical logic and memory elements.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. J. Adams, �??Physics and applications of optical bistability in semiconductor laser amplifiers,�?? Solidstate Electron. 30, 1, 43-51(1987)
    [CrossRef]
  2. N. F. Mitchell, J. Ogorman, J. Hegarty and J. C. Connolly, �??Optical bistability in asymmetric Fabry-Perot laser diode amplifiers,�?? Opt. Lett. 19, 269-271 (1994)
    [CrossRef] [PubMed]
  3. T. Nakai, N. Ogasawara and R. Ito, �??Optical bistability in a semiconductor laser amplifier,�?? Jap. J. of Appl. Phys. 22, L310-L312 (1983)
    [CrossRef]
  4. Ogasawara and R. Ito, �??Static and dynamic properties of nonlinear semiconductor laser amplifiers,�?? Jap. J. Appl. Phys. 25, L739-L742 (1986)
    [CrossRef]
  5. H. J. Westlake, M. Adams and M. Omahony, �??Measurement of optical bistability in an InGaAsP laser amplifier at 1.5um,�?? Electron. Lett. 21, 992-993 (1985)
    [CrossRef]
  6. W.F. Sharfin and M. Dagenais �??High contrast, 1.3 um optical AND gate with gain,�?? Appl. Phys. Lett. 48, 1510-1512 (1986)
    [CrossRef]
  7. P. Pakdeevanich and M. Adams, �??Measurement and modeling of reflective bistability in 1.55um laser diode amplifiers,�?? IEEE J. Quantum Electron. 34, 1894-1903 (1999)
    [CrossRef]
  8. R. Lewen, K. Streubel, A. Karlsson and S. Rapp, �??Experimental demonstration of a multifunction longwavelength vertical-cavity laser amplifier-detector,�?? IEEE Photon. Technol. Lett. 10, 1067-1069 (1998)
    [CrossRef]
  9. E. S. Björlin, B. Riou, P. Abraham, J. Piprek, Y. Chiu, K. A. Black, A. Keating and J. E. Bowers, �??Long wavelength vertical-cavity semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 37, 274 (2001)
    [CrossRef]
  10. P. Wen, M. Sánchez, M. Gross, O. Kibar, S. Esener, �??New Photon Density Rate Equation for Fabry-Perot Semiconductor Optical Amplifier,�?? Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, San Jose, CA, USA. 23-24, Jan. 2002, 243-250 (2002)
  11. H. Kawaguchi, Bistabilities and nonlinearities in laser diode (Artech House, 1994)
  12. M. J. Adams, H. Westlake, J. Omahony and I. Henning, �??A comparison for active and passive optical bistability in semiconductors,�?? IEEE J. Quantum Electron. 21, 1498-1504, (1985)
    [CrossRef]
  13. Z. Pan, M. Dagenais, �??Subnanosecond Optically Addressable Generalized Optical Crossbar Switch with an Aggregate Throughput Rate of 4.2 Gbit/s,�?? Appl. Phys. Lett. 62, 2185-2187 (1993)
    [CrossRef]
  14. J. Piprek, E. S. Bjorlin, J. E. Bowers, �??Optical gain-bandwidth product of vertical cavity laser amplifiers,�?? IEEE Electron. Lett. 37, 298-299 (2001)
    [CrossRef]
  15. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, Somerset, England, 1995).
  16. Z. Pan, H. Lin, M. Dagenais, �??Switching Power Dependence on Detuning and Current in Bistable Diode Laser Amplifiers,�?? Appl. Phys. Lett. 58, 687-689 (1991)
    [CrossRef]

Appl. Phys. Lett.

W.F. Sharfin and M. Dagenais �??High contrast, 1.3 um optical AND gate with gain,�?? Appl. Phys. Lett. 48, 1510-1512 (1986)
[CrossRef]

Z. Pan, M. Dagenais, �??Subnanosecond Optically Addressable Generalized Optical Crossbar Switch with an Aggregate Throughput Rate of 4.2 Gbit/s,�?? Appl. Phys. Lett. 62, 2185-2187 (1993)
[CrossRef]

Z. Pan, H. Lin, M. Dagenais, �??Switching Power Dependence on Detuning and Current in Bistable Diode Laser Amplifiers,�?? Appl. Phys. Lett. 58, 687-689 (1991)
[CrossRef]

Electron. Lett.

H. J. Westlake, M. Adams and M. Omahony, �??Measurement of optical bistability in an InGaAsP laser amplifier at 1.5um,�?? Electron. Lett. 21, 992-993 (1985)
[CrossRef]

IEEE Electron. Lett.

J. Piprek, E. S. Bjorlin, J. E. Bowers, �??Optical gain-bandwidth product of vertical cavity laser amplifiers,�?? IEEE Electron. Lett. 37, 298-299 (2001)
[CrossRef]

IEEE J. Quantum Electron.

M. J. Adams, H. Westlake, J. Omahony and I. Henning, �??A comparison for active and passive optical bistability in semiconductors,�?? IEEE J. Quantum Electron. 21, 1498-1504, (1985)
[CrossRef]

E. S. Björlin, B. Riou, P. Abraham, J. Piprek, Y. Chiu, K. A. Black, A. Keating and J. E. Bowers, �??Long wavelength vertical-cavity semiconductor optical amplifiers,�?? IEEE J. Quantum Electron. 37, 274 (2001)
[CrossRef]

P. Pakdeevanich and M. Adams, �??Measurement and modeling of reflective bistability in 1.55um laser diode amplifiers,�?? IEEE J. Quantum Electron. 34, 1894-1903 (1999)
[CrossRef]

IEEE Photon. Technol. Lett.

R. Lewen, K. Streubel, A. Karlsson and S. Rapp, �??Experimental demonstration of a multifunction longwavelength vertical-cavity laser amplifier-detector,�?? IEEE Photon. Technol. Lett. 10, 1067-1069 (1998)
[CrossRef]

Jap. J. Appl. Phys.

Ogasawara and R. Ito, �??Static and dynamic properties of nonlinear semiconductor laser amplifiers,�?? Jap. J. Appl. Phys. 25, L739-L742 (1986)
[CrossRef]

Jap. J. of Appl. Phys.

T. Nakai, N. Ogasawara and R. Ito, �??Optical bistability in a semiconductor laser amplifier,�?? Jap. J. of Appl. Phys. 22, L310-L312 (1983)
[CrossRef]

Opt. Lett.

Solidstate Electron.

M. J. Adams, �??Physics and applications of optical bistability in semiconductor laser amplifiers,�?? Solidstate Electron. 30, 1, 43-51(1987)
[CrossRef]

Other

T. E. Sale, Vertical Cavity Surface Emitting Lasers (Research Studies Press, Somerset, England, 1995).

P. Wen, M. Sánchez, M. Gross, O. Kibar, S. Esener, �??New Photon Density Rate Equation for Fabry-Perot Semiconductor Optical Amplifier,�?? Photonics West 2002, Physics and Simulation of Optoelectronic Devices X, San Jose, CA, USA. 23-24, Jan. 2002, 243-250 (2002)

H. Kawaguchi, Bistabilities and nonlinearities in laser diode (Artech House, 1994)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup

Fig. 2.
Fig. 2.

Optical I/O: hysteresis loops with IBias = 0.95 ITh. The initial phase detuning values are - 4 × 10-4π for squares, - 4.8 × 10-4π for dots and - 5.7 × 10-4π for triangles

Fig. 3.
Fig. 3.

Optical I/O: hysteresis loops measured at different bias currents with the same initial phase detuning: IBias = 0.98 ITh for diamonds and IBias = 0.95 ITh for dots

Fig. 4.
Fig. 4.

Gain spectrum of a VCSOA biased at 95% of its lasing threshold: Solid line is theoretical curve and dots are the experimental measurements

Fig. 5.
Fig. 5.

Numerical simulation of the optical bistability in a VCSOA with IBias = 0.95 ITh

Fig. 6.
Fig. 6.

Numerical simulation of the optical bistability in a VCSOA with a fixed initial phase detuning at different bias current

Tables (1)

Tables Icon

Table 1. Parameters used in calculation of theoretical curves

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 2 π L λ + g 0 Lb 2 ( I av I s + I av )
g = Γ g 0 I s I s + I av α
I s = E Γ ατ
I av = ( 1 R 1 ) ( 1 + R 2 e gL ) ( e gL 1 ) [ ( 1 R 1 R 2 e gL ) 2 + 4 R 1 R 2 e gL sin 2 ϕ ] gL P in P x
P R = [ ( R 1 R 2 e gL ) 2 + 4 R 1 R 2 e gL sin 2 ϕ ] gL ( 1 R 1 ) ( 1 + R 2 e gL ) ( e gL 1 ) I av P y

Metrics