Abstract

Here we describe a new method for numerically reconstructing an object with variable viewing angles from its hologram(s) within the Fresnel domain. The proposed algorithm can render the real image of the original object not only with different focal lengths but also with changed viewing angles. Some representative simulation results and demonstrations are presented to verify the effectiveness of the algorithm.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. O. Schnars andW. Juptner, �??Direct recording of holograms by a CCD target and numerical reconstruction,�?? Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  2. B. Nilsson and T. E. Carlsson, �??Direct three-dimensional shape measurement by digital light-in-flight holography,�?? Appl. Opt. 37, 7954-7959 (1998).
    [CrossRef]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, �??Digital holography for quantitative phase-contrast imaging,�?? Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  4. Yamaguchi and T. Zhang, �??Phase-shifting digital holography,�?? Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  5. F. Dubois, L. Joannes, and J. Legros, �??Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,�?? Appl. Opt. 38, 7085-7094 (1999).
    [CrossRef]
  6. L. Yu and L. Cai, �??Iterative algorithm with a constraint condition for numerical reconstruction of a threedimensional object from its hologram,�?? J. Opt. Soc. Am. A 18, 1033-1045 (2001).
    [CrossRef]
  7. Y. Takaki and H. Ohzu, �??Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles,�?? Appl. Opt. 39, 5302-5308 (2000).
    [CrossRef]
  8. M. Kim, "Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography," Opt. Express 7, 305-310 (2000). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305</a>
    [CrossRef] [PubMed]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  10. D. Leseberg and C. Frere, �??Computer-generated holograms of 3-D objects composed of tilted planar segments,�?? Appl. Opt. 27, 3020-3024 (1988).
    [CrossRef] [PubMed]
  11. L. Xu, J. Miao, and A. Asundi, �??Properties of digital holography based on in-line configuration,�?? Opt. Eng. 39, 3214-3219 (2000).
    [CrossRef]
  12. T. M. Kreis, �??Frequency analysis of digital holography,�?? Opt. Eng. 41, 771-778 (2002).
    [CrossRef]
  13. H. Aagedal, F. Wyrowski, and M. Schmid, Diffractive Optics for Industrial and Commercial Applications, J. Turunen and F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), Chap. 6, pp. 165-188.

Appl. Opt. (5)

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

L. Xu, J. Miao, and A. Asundi, �??Properties of digital holography based on in-line configuration,�?? Opt. Eng. 39, 3214-3219 (2000).
[CrossRef]

T. M. Kreis, �??Frequency analysis of digital holography,�?? Opt. Eng. 41, 771-778 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

H. Aagedal, F. Wyrowski, and M. Schmid, Diffractive Optics for Industrial and Commercial Applications, J. Turunen and F. Wyrowski, eds. (Akademie Verlag, Berlin, 1997), Chap. 6, pp. 165-188.

Supplementary Material (3)

» Media 1: GIF (145 KB)     
» Media 2: GIF (1584 KB)     
» Media 3: GIF (1607 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Reconstruction with changed viewing angles.

Fig. 2.
Fig. 2.

(a) Recording and reconstructing a hologram; (b) Texture of the object.

Fig. 3.
Fig. 3.

(a) Magnitude; (b) phase of the object wave on the hologram.

Fig. 4.
Fig. 4.

(GIF, 145KB) A demo of reconstructing the real object with fixed li =1.2m but with changed viewing angles from -75° to 75°.

Fig. 5.
Fig. 5.

(a) Texture of layer 1 at 1.0m; (b) Texture of the layer 2 at 1.2m.

Fig. 6.
Fig. 6.

(a) Magnitude; (b) phase of the object wave on the hologram.

Fig. 7.
Fig. 7.

(a) (GIF, 1.54MB) A demo of reconstructing the real object with fixed viewing angle θ = 45° but with changed focal length between 1.0m and 1.2m; (b) (GIF, 1.56MB) A demonstration with both the viewing angle and the focal length adjusted.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ( x o , y o , z o ) = iE 0 λ ∫∫ τ x y exp ( iky sin θ ) exp [ ikr ( x , y , x o , y o ) ] r ( x , y , x o , y o ) χ ( x , y , x o , y o ) dxdy
r = ( z o y sin θ ) 2 + ( x o x ) 2 + ( y o y cos θ ) 2
E ( x o , y o , z o ) = exp ( ikr o ) ∫∫ τ x y exp [ ik 2 r o ( x 2 + y 2 ) ]
× exp { ik r o [ x o x + y o y cos θ + ( z o r o ) y sin θ ] } dxdy
ik 2 r o ( x 2 + y 2 ) ik 2 z o ( x 2 + y 2 )
ξ = x o λr o
η = 1 λ r o [ y o cos θ + ( z o r o ) sin θ ]
E ( ξ , η , z o ) = exp ( ikr o ) τ x y exp [ ik 2 z o ( x 2 + y 2 ) ] exp [ i 2 π ( ξx + ηy ) ] dxdy
Δ f x o = 1 δx o Np λz o , and Δ f y o = 1 δy o Np cos θ λz o
P = α z o Δ f x o · α z o Δ f y o N 2 cos θ

Metrics