Abstract

Different responses for the front (entrance) and the rear (exit) surfaces of fused silica processed with femtosecond laser pulses at 807 nm were observed under tight focusing conditions (NA = 0.4). The morphology of the surface in the beam path is highly sensitive to the focus position. By adjusting the focus position, we can produce not only a submicrometer cavity but also a submicrometer bubble. We achieved higher-quality micromachining and a better spatial resolution (400 nm) by focusing the laser beam at the rear surface rather than at the front surface.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  2. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, �??Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,�?? Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  3. J. Krüger and W. Kautek, �??The femtosecond pulse laser: a new tool for micromaching,�?? Laser Phys. 9, 30-40 (1999).
  4. L. Shah, J. Tawney, M. Richardson, and K. Richardson, �??Femtosecond laser deep hole drilling of silicate glasses in air,�?? Appl. Surf. Sci. 183, 151-164 (2001).
    [CrossRef]
  5. A. Salleo, T. Sands, and F. Y. Génin, �??Machining of transparent materials using an IR and UV nanosecond pulsed laser,�?? Appl. Phys. A 71, 601-608 (2000).
    [CrossRef]
  6. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, �??Machining of sub-micron holes using a femtosecond laser at 800nm,�?? Opt. Commun. 114, 106-110 (1995).
    [CrossRef]
  7. P. Simon and J. Ihlemann, �??Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,�?? Appl. Surf. Sci. 109/110, 25-29 (1997).
    [CrossRef]
  8. E. E. B. Campbell, D. Ashkenasi, and A. Rosenfeld, �??Ultra-short-pulse Laser irradiation and ablation of dielectrics,�?? Mater. Sci. Forum 301, 123-144 (1999).
    [CrossRef]
  9. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, �??Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,�?? Appl. Surf. Sci. 150, 101-106 (1999).
    [CrossRef]
  10. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Campbell, �??Application of selffocusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442-1444 (1998).
    [CrossRef]
  11. D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, �??Laser processing of sapphire with picosecond and sub-picosecond pulses,�?? Appl. Surf. Sci. 120, 65-80 (1997).
    [CrossRef]
  12. R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, �??Laser ablation of dielectrics with temporally shaped femtosecond pulses,�?? Appl. Phys. Lett. 80, 353-355 (2002).
    [CrossRef]
  13. E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  14. D. Wang, C. Li, L. Luo, H. Yang, and Q. Gong, �??Sub-diffraction-limit voids in bulk quartz induced by femtosecond laser pulses,�?? Chin. Phys. Lett. 18, 65 (2001).
    [CrossRef]
  15. S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Initiation of an early-stage plasma during picosecond laser ablation,�?? Appl. Phys. Lett. 77, 2464-2466 (2000).
    [CrossRef]
  16. S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Simulation of a picosecond lasr ablation plasma,�?? Appl. Phys. Lett. 76, 3370-3372 (2000
    [CrossRef]
  17. S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Simulation of infrared picosecond laser-induced electron emission from semiconductors,�?? Appl. Surf. Sci. 127-129, 206-211 (2000).
  18. M. Lenzner, J. Kruger, S. Sartania, Z. Chang, Ch. Spielmann, G. Mourou, W. Kautek, and F. Frausz, �??Femtosecond optical breakdown in dielectrics,�?? Phys. Rev. Lett. 18, 4076-4079 (1998).
    [CrossRef]
  19. A. Salleo, F. Y. Génin, M. D. Feit, A.M. Rubenchik, T. Sands, S. S.Mao, and R. E. Russo, �??Energy deposition at front and rear surfaces during picosecond laser interation with fused silica,�?? Appl. Phys. Lett. 78, 2840-2842 (2001).
    [CrossRef]
  20. R. Kelly, A. Miotello, B. Braren, and C. E. Otis, �??On the debris phenomenon with laser-sputtered polymers,�?? Appl. Phys. Lett. 60, 2980-2982 (1992).
    [CrossRef]
  21. C. B. Schaffer, "Interaction of femtosecond laser pulses with transparent materials," Ph.D. dissertation (Harvard University, Cambridge, Mass., 2001).
  22. Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, and Q. Gong, �??Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica,�?? Opt. Lett. 27, 448- 450 (2002).
    [CrossRef]

Appl. Phys. A (1)

A. Salleo, T. Sands, and F. Y. Génin, �??Machining of transparent materials using an IR and UV nanosecond pulsed laser,�?? Appl. Phys. A 71, 601-608 (2000).
[CrossRef]

Appl. Phys. Lett. (7)

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Campbell, �??Application of selffocusing of ps laser pulses for three-dimensional microstructuring of transparent materials,�?? Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, I. V. Hertel, and E. E. B. Campbell, �??Laser ablation of dielectrics with temporally shaped femtosecond pulses,�?? Appl. Phys. Lett. 80, 353-355 (2002).
[CrossRef]

E. N. Glezer and E. Mazur, �??Ultrafast-laser driven micro-explosions in transparent materials,�?? Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Initiation of an early-stage plasma during picosecond laser ablation,�?? Appl. Phys. Lett. 77, 2464-2466 (2000).
[CrossRef]

S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Simulation of a picosecond lasr ablation plasma,�?? Appl. Phys. Lett. 76, 3370-3372 (2000
[CrossRef]

A. Salleo, F. Y. Génin, M. D. Feit, A.M. Rubenchik, T. Sands, S. S.Mao, and R. E. Russo, �??Energy deposition at front and rear surfaces during picosecond laser interation with fused silica,�?? Appl. Phys. Lett. 78, 2840-2842 (2001).
[CrossRef]

R. Kelly, A. Miotello, B. Braren, and C. E. Otis, �??On the debris phenomenon with laser-sputtered polymers,�?? Appl. Phys. Lett. 60, 2980-2982 (1992).
[CrossRef]

Appl. Surf. Sci. (5)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, �??Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,�?? Appl. Surf. Sci. 150, 101-106 (1999).
[CrossRef]

S. S. Mao, X. L. Mao, R. Greif, and R. E. Russo, �??Simulation of infrared picosecond laser-induced electron emission from semiconductors,�?? Appl. Surf. Sci. 127-129, 206-211 (2000).

D. Ashkenasi, A. Rosenfeld, H. Varel, M. Wahmer, and E. E. B. Campbell, �??Laser processing of sapphire with picosecond and sub-picosecond pulses,�?? Appl. Surf. Sci. 120, 65-80 (1997).
[CrossRef]

P. Simon and J. Ihlemann, �??Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,�?? Appl. Surf. Sci. 109/110, 25-29 (1997).
[CrossRef]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, �??Femtosecond laser deep hole drilling of silicate glasses in air,�?? Appl. Surf. Sci. 183, 151-164 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

D. Wang, C. Li, L. Luo, H. Yang, and Q. Gong, �??Sub-diffraction-limit voids in bulk quartz induced by femtosecond laser pulses,�?? Chin. Phys. Lett. 18, 65 (2001).
[CrossRef]

Laser Phys. (1)

J. Krüger and W. Kautek, �??The femtosecond pulse laser: a new tool for micromaching,�?? Laser Phys. 9, 30-40 (1999).

Mater. Sci. Forum (1)

E. E. B. Campbell, D. Ashkenasi, and A. Rosenfeld, �??Ultra-short-pulse Laser irradiation and ablation of dielectrics,�?? Mater. Sci. Forum 301, 123-144 (1999).
[CrossRef]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, �??Machining of sub-micron holes using a femtosecond laser at 800nm,�?? Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Lenzner, J. Kruger, S. Sartania, Z. Chang, Ch. Spielmann, G. Mourou, W. Kautek, and F. Frausz, �??Femtosecond optical breakdown in dielectrics,�?? Phys. Rev. Lett. 18, 4076-4079 (1998).
[CrossRef]

Other (1)

C. B. Schaffer, "Interaction of femtosecond laser pulses with transparent materials," Ph.D. dissertation (Harvard University, Cambridge, Mass., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup. CPA, chirped-pulse amplifier.

Fig. 2.
Fig. 2.

AFM pictures of the destructive area produced at the front surface. The distance from focus of the laser beam to the front surface is (a) -4, (b) -3, (c) 0, (d) 2, and (e) 4 μm. The negative value represents that the focus is in the bulk side of the sample. The diameter of the damaged area is (a) 1.31, (b) 1.66, (c) 2.48, (d) 2.22, (e) and 1.59 μm. The energy of the laser pulse is 0.40 μm.

Fig. 3.
Fig. 3.

AFM pictures of the destructive area produced at the rear surface. The laser beam is focused at the rear surface in (a), and in the sample with a distance of 4 μm to the rear surface in (b). The diameter of the cavity is 1.14 μm, and the bubble is 620 nm. The energy of the laser pulse is 0.40 μJ.

Fig. 4.
Fig. 4.

Plotted is the dependence of diameter of damaged area at the front and rear surface of sample on the energy of the single laser pulse. The laser beam was focused by the objective with 0.40-NA and 6.9-mm working distance.

Fig. 5.
Fig. 5.

AFM image of the pit produced by means of focusing the laser pulse at the rear surface of the sample. The diameter of the pit is 400 nm, and the laser pulse energy was 0.20 μJ.

Metrics