Abstract

Perturbation theory formulation of Maxwell’s equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Coordinate transformation method as applied to asymmetric gratings with vertical facets

J. P. Plumey, B. Guizal, and J. Chandezon
J. Opt. Soc. Am. A 14(3) 610-617 (1997)

Improvement of the coordinate transformation method for surface-relief gratings with sharp edges

Lifeng Li and Jean Chandezon
J. Opt. Soc. Am. A 13(11) 2247-2255 (1996)

References

  • View by:
  • |
  • |
  • |

  1. Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
    [Crossref] [PubMed]
  2. Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
    [Crossref]
  3. M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
    [Crossref]
  4. M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.
  5. M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
    [Crossref]
  6. N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
    [Crossref]
  7. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 2nd ed., 1991).
  8. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
  9. B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
    [Crossref]
  10. L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).
  11. F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).
  12. H. Hung-Chia, Coupled mode theory as applied to microwave and optical transmission (VNU Science Press, Utrecht1984).
  13. Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
    [Crossref]
  14. L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).
  15. C. Vassallo, Optical waveguide concepts (Elsevier, Amsterdam, 1991).
  16. R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
    [Crossref]
  17. J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
    [Crossref]
  18. E.J. Post, Formal Structure of Electromagnetics (Amsterdam: North-Holland, 1962).
  19. F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
    [Crossref]
  20. P. Bienstman, software at http://camfr.sf.net.

2003 (1)

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

2002 (3)

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

2001 (1)

1999 (1)

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]

1998 (1)

F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]

1995 (1)

J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]

1983 (1)

R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]

1981 (1)

N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]

Bahlmann, N.

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]

Bienstman, P.

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

P. Bienstman, software at http://camfr.sf.net.

Chandezon, J.

J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]

Chang, D. C.

L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).

Chew, W.C.

F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]

Engeness, Torkel D.

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Fink, Yoel

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Granet, G.

J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]

Hertel, P.

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]

Hill, N. R.

N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]

Holland, R.

R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]

Hung-Chia, H.

H. Hung-Chia, Coupled mode theory as applied to microwave and optical transmission (VNU Science Press, Utrecht1984).

Ibanescu, M.

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Ibanescu, Mihai

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Jacobs, Steven A.

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Joannopoulos, J. D.

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Johnson, Steven G.

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Katsenelenbaum, B. Z.

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

Kuester, E. F.

L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).

Lewin, L.

L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).

Lidorikis, E.

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).

Lohmeyer, M.

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).

Marcuse, D.

D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 2nd ed., 1991).

Mercader del Río, L.

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

Pereyaslavets, M.

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

Plumey, J.P.

J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]

Post, E.J.

E.J. Post, Formal Structure of Electromagnetics (Amsterdam: North-Holland, 1962).

Skorobogatiy, M.

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Skorobogatiy, M. A.

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).

Soljacic, Marin

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

Sorolla Ayza, M.

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

Sporleder, F.

F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).

Teixeira, F.L.

F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]

Thumm, M.

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

Unger, H. G.

F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).

Vassallo, C.

C. Vassallo, Optical waveguide concepts (Elsevier, Amsterdam, 1991).

Weisberg, Ori

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748.
[Crossref] [PubMed]

IEEE Trans. Nucl. Sci. (1)

R. Holland, “Finite-difference solution of Maxell’s equation in generalized nonorhogonal coordinates,” IEEE Trans. Nucl. Sci. 30, 4589 (1983).
[Crossref]

IEEE Trans. on Antennas Propag. (1)

J.P. Plumey, G. Granet, and J. Chandezon, “Differential covariant formalism for solving Maxwell’s equations in curvilinear coordinates: oblique scattering from lossy periodic surfaces,” IEEE Trans. on Antennas Propag. 43, 835 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

M. Skorobogatiy, Steven A. Jacobs, Steven G. Johnson, and Yoel Fink, “Dielectric profile variations in high index-contrast waveguides, coupled mode theory and perturbation expansions,” to be published in J. Opt. Soc. Am. B, 2003.

Microwave Opt. Technol. Lett. (1)

F.L. Teixeira and W.C. Chew, “Analytical derivation of a conformal perfectly matched absorber for electromagnetic waves,” Microwave Opt. Technol. Lett. 17, 231 (1998).
[Crossref]

Opt. Communications (1)

M. Lohmeyer, N. Bahlmann, and P. Hertel, “Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory,” Opt. Communications 163, pp. 86–94 (1999).
[Crossref]

Opt. Express (1)

Opt. Soc. Am. B (1)

M. Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, “Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion,” Opt. Soc. Am. B 19, (2002).
[Crossref]

Phys. Rev. B (1)

N. R. Hill,“Integral-equation perturbative approach to optical scattering from rough surfaces,” Phys. Rev. B 24, p. 7112 (1981).
[Crossref]

Phys. Rev. E (2)

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, J. D. Joannopoulos, and Yoel Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 66611 (2002).
[Crossref]

Steven G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” to be published in Phys. Rev. E, 2002.
[Crossref]

Other (10)

L. D. Landau and E. M. Lifshitz, Quantum mechanics (non-relativistic theory) (Butterworth Heinemann, 2000).

C. Vassallo, Optical waveguide concepts (Elsevier, Amsterdam, 1991).

P. Bienstman, software at http://camfr.sf.net.

E.J. Post, Formal Structure of Electromagnetics (Amsterdam: North-Holland, 1962).

D. Marcuse, Theory of dielectric optical waveguides (Academic Press, 2nd ed., 1991).

A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).

B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998).
[Crossref]

L. Lewin , D. C. Chang, and E. F. Kuester, Electromagnetic waves and curved structures (IEE Press, Peter Peregrinus Ltd., Stevenage1977).

F. Sporleder and H. G. Unger, Waveguide tapers transitions and couplers (IEE Press, Peter Peregrinus Ltd., Stevenage1979).

H. Hung-Chia, Coupled mode theory as applied to microwave and optical transmission (VNU Science Press, Utrecht1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

a) Dielectric profile of a cylindrically symmetric fiber. Concentric dielectric interfaces are characterized by their radii ρi . b) Scaling variation - linear tapers. Fiber profile remains cylindrically symmetric, while the radii of the dielectric interfaces along the direction of propagation s become ρ i ( 1 + δ s L ) . c) Scaling variation - sinusoidal Bragg gratings. Fiber profile remains cylindrically symmetric, while the radii of the dielectric interfaces along the direction of propagation s become ρ i ( 1 + δ Sin ( 2 π s Λ ) ) . d) Non-concentric variation. Each dielectric interface stays cylindrically symmetric, while the center line is bent.

Fig. 2.
Fig. 2.

a) Transmitted power T 1 in the fundamental m = 1 mode, along with the transmitted powers T 2, T 3 in the second and third m = 1 parasitic modes as a function of the taper length L, calculated by our coupled mode theory. Results of anas ymptotically exact transfer matrix based CAMFR code are presented in circles. b) Convergence of the errors in the transmitted and reflected coefficients for a taper length of L = 10a as a function of the number of expansion modes. Solid lines correspond to the relative errors in the transmission coefficients while dotted lines correspond to the relative errors in the reflected coefficients. Calculated by our coupled mode theory, errors inthe transmission and reflection coefficients exhibit faster thana quadratic convergence.

Fig. 3.
Fig. 3.

a) Transmitted powers T 2, T 3, T 4 in the second third and forth m = 1 modes for the grating lengths [ Λ 2 , 3 Λ ] inthe Λ 2 increments are plotted in crosses, calculated by our coupled mode theory. In this geometry the incoming and outgoing waveguides are the same. Results of anas ymptotically exact transfer matrix based CAMFR code are presented in circles. When grating length is increased the power transfer to the first excited mode is monotonically increased as expected. b) Convergence of the errors in the transmitted and reflected coefficients for a grating of L = Λ 2 as a function of the number of expansion modes. Solid lines correspond to the relative errors inthe transmissionco efficients. Calculated by our coupled mode theory, errors in the transmission and reflection coefficients exhibit faster than a linear convergence.

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

x = ρCos ( θ ) y = ρSin ( θ ) z = s .
x = ρCos ( θ ) ( 1 + f ( s ) ) y = ρSin ( θ ) ( 1 + f ( s ) ) z = s .
x = ρCos ( θ ) Cos ( s R ) + R ( Cos ( s R ) 1 ) y = ρSin ( θ ) z = ρCos ( θ ) Sin ( s R ) + R Sin ( s R ) ,
i z B ̂ ψ = A ̂ ψ ,
B ̂ = ( 0 z ̂ × z ̂ × 0 ) ,
A ̂ = ( ω c c ω t × [ z ̂ ( 1 μ z ̂ ( t × ) ) ] 0 0 ω c μ c ω t × [ z ̂ ( 1 z ̂ ( t × ) ) ] ) ,
ψ β * 0 B ̂ ψ β 0 = β β δ β , β′ ,
β B ̂ ψ β 0 = A ̂ 0 ψ β 0 .
i z B ̂ ψ = ( A ̂ 0 + Δ A ̂ ( z ) ) ψ ,
ψ = i C i ( z ) exp i β i z ψ β i 0 ,
i B C z = Δ A C ,
C j ( z ) = ψ β j 0 Δ A ̂ ψ β n 0 ψ β j 0 B ̂ ψ β j 0 ψ β n 0 B ̂ ψ β n 0 exp i ( β n β j ) z 1 β n β j ,
a i = x 1 q i x 2 q i x 3 q i .
a i = 1 g a j × a k , k j i ,
g i j = x k q i x k q j ,
a i a j = δ i , j , a i a j = g i j , a i a j = g i j ,
x = ρCos ( θ ) ( 1 + δ s L ) y = ρSin ( θ ) ( 1 + δ s L ) z = s .
i ρ = ( Cos ( θ ) , Sin ( θ ) , 0 ) ; i ρ = Cos ( θ ) , Sin ( θ ) , δ ρ L ) i θ = ( Sin ( θ ) , Cos ( θ ) , 0 ) ; i θ = ( Sin ( θ ) , Cos ( θ ) , 0 ) i s = ( δ ρ L Cos ( θ ) , δ ρ L Sin ( θ ) , 1 ) 1 + ( δ ρ L ) 2 ; i s = 0,0,1 .
x ρ θ s , y ρ θ s , z ρ θ s ,
q 1 q 2 q 3 E i g i i c t = 1 g e ijk H k g k k q j μ q 1 q 2 q 3 H i g i i c t = 1 g e ijk E k g k k q j ,
( E ρ θ s t H ρ θ s t ) = ( E ρ θ s H ρ θ s ) exp iωt .
i E θ g θ θ s = i E s g s s θ + ω c g ( g ρ ρ H ρ + g ρ θ g θ θ H θ + g ρ s g s s H s ) i E ρ g ρ ρ s = i E s g s s ρ + ω c g ( g θ ρ g ρ ρ H ρ + g θ θ H θ + g θ s g s s H s ) i H θ g θ θ s = i H s g s s θ + ω c g ( g ρ ρ E ρ + g ρ θ g θ θ E θ + g ρ s g s s E s ) i H ρ g ρ ρ s = i H s g s s ρ + ω c g ( g θ ρ g ρ ρ E ρ + g θ θ E θ + g θ s g s s E s )
i E s g s s = c ω g g s s ( H θ g θ θ ρ H ρ g ρ ρ θ ) i g s s ( g s ρ g ρ ρ E ρ + g s θ g θ θ E θ ) i H s g s s = c ω g g s s ( E θ g θ θ ρ E ρ g ρ ρ θ ) i g s s ( g s ρ g ρ ρ H ρ + g s θ g θ θ H θ ) .
( E 0 ρ θ s H 0 ρ θ s ) β m = ( E 0 ( ρ ) H 0 ( ρ ) ) β m exp iβs + iθm .
β E θ β 0 m = g 0 θ θ m E s β 0 m + ω c g 0 g 0 ρ ρ g 0 θ θ H ρ β 0 m β E ρ β 0 m = g 0 ρ ρ i E s β 0 m ρ + ω c g 0 g 0 ρ ρ g 0 θ θ H θ β 0 m β H θ β 0 m = g 0 θ θ m H s β 0 m + ω c g 0 g 0 ρ ρ g 0 θ θ E ρ β 0 m β H ρ β 0 m = g 0 ρ ρ i H s β 0 m ρ + ω c g 0 g 0 ρ ρ g 0 θ θ E θ β 0 m
i E s β 0 m = c ω g 0 ( H θ β 0 m g 0 θ θ ρ i m H ρ β 0 m g 0 ρ ρ ) i H s β 0 m = c ω g 0 ( E θ β 0 m g 0 θ θ ρ i m E ρ β 0 m g 0 ρ ρ ) ,
ψ β * , m 0 B ̂ ψ β , m 0 = β β δ β , β =
( ( H θ β * 0 m ) * E ρ β 0 m ( H θ β * 0 m ) * E θ β 0 m + H θ β 0 m ( E ρ β * 0 m ) * H ρ β 0 m ( E θ β * 0 m ) * ) J 0 ( ρ ) dρdθ ,
Ψ β , m = ( g ρ ρ g 0 ρ ρ E ρ 0 ( ρ x y z ) i ρ + g θ θ g 0 θ θ E θ 0 ( ρ x y z ) i θ g ρ ρ g 0 ρ ρ H ρ 0 ( ρ x y z ) i ρ + g θ θ g 0 θ θ H θ 0 ( ρ x y z ) i θ ) β m exp imθ x y z .
( E ρ E θ H ρ H θ ) = β , m C m β ( s ) ( g ρ ρ g 0 ρ ρ E ρ 0 ( ρ ) g θ θ g 0 θ θ E θ 0 ( ρ ) g ρ ρ g 0 ρ ρ H ρ 0 ( ρ ) g θ θ g 0 θ θ H θ 0 ( ρ ) ) β m exp im θ .
i B C ( s ) s = M C ( s ) ,
M β * , m ; β , m = ψ β * m M ̂ ψ β , m = ω c exp i ( m m ) θ ×
( E ρ 0 ( ρ ) E θ 0 ( ρ ) E s 0 ( ρ ) H ρ 0 ( ρ ) H θ 0 ( ρ ) H s 0 ( ρ ) ) β * m ( d ρ ρ d ρ θ d ρ s 0 0 0 d θ ρ d θ θ d θ s 0 0 0 d s ρ d s θ d s s 0 0 0 0 0 0 d ρ ρ d ρ θ d ρ s 0 0 0 d θ ρ d θ θ d θ s 0 0 0 d s ρ d s θ d s s ) ( E ρ 0 ( ρ ) E θ 0 ( ρ ) E s 0 ( ρ ) H ρ 0 ( ρ ) H θ 0 ( ρ ) H s 0 ( ρ ) ) β m′ J 0 ( ρ ) dρdθ ,
d ρ ρ = g g 0 θ θ g 0 ρ ρ ( g ρ ρ ( g ρ s ) 2 g s s ) d ρ θ = d θ ρ = g ( g ρ θ g ρ s g θ s g s s ) d ρ s = d s ρ = g 0 g 0 θ θ g 0 s s g ρ s g s s d θ θ = g g 0 ρ ρ g 0 θ θ ( g θ θ ( g θ s ) 2 g s s ) d θ s = d s θ = g 0 g 0 ρ ρ g 0 s s g θ s g s s d s s = g 0 g 0 s s g s s g 0 ρ ρ g 0 θ θ g .
i H ρ β * 0 m g 0 θ θ E θ g θ θ s = H ρ β * 0 m g 0 θ θ i E s g s s θ +
ω c ( H ρ β * 0 m g g ρ ρ g 0 θ θ H ρ + H ρ β * 0 m g 0 θ θ g g θ θ g ρ θ H θ ) + H ρ β * 0 m g 0 θ θ g g s s g ρ s H s ) )
i H θ β * 0 m g 0 ρ ρ E ρ g ρ ρ s = H θ β * 0 m g 0 ρ ρ i E s g s s ρ +
ω c ( H θ β * 0 m g 0 ρ ρ g g ρ ρ g θ ρ H ρ + H θ β * 0 m g g 0 ρ ρ g θ θ H θ ) + H θ β * 0 m g 0 ρ ρ g g s s g θ s H s )
i E ρ β * 0 m g 0 θ θ H θ g θ θ s = E ρ β * 0 m g 0 θ θ i H s g s s θ +
ω c ( E ρ β * 0 m g g ρ ρ g 0 θ θ E ρ + E ρ β * 0 m g 0 θ θ g g θ θ g ρ θ E θ + E ρ β * 0 m g 0 θ θ g g s s g ρ s E s )
i E θ β * 0 m g 0 ρ ρ H ρ g ρ ρ s = E θ β * 0 m g 0 ρ ρ i H s g s s ρ +
ω c ( E θ β * 0 m g 0 ρ ρ g g ρ ρ g θ ρ E ρ + E θ β * 0 m g g 0 ρ ρ g θ θ E θ + E θ β * 0 m g 0 ρ ρ g g s s g θs E ρ ) .
i B C m β ( s ) s = β m C m β ( s ) ψ β * , m 0 M ̂ ψ β , m 0 = β m C m β [ H ρ β * 0 m g 0 θ θ i E m g s s θ
H θ β * 0 m g 0 ρ ρ i E s β m g s s ρ E ρ β * 0 m g 0 θ θ i H m g s s θ + E θ β * 0 m g 0 ρ ρ i H m g s s ρ
+ ω c ( H ρ β * 0 m g g ρ ρ g 0 θ θ H ρ β 0 m + H ρ β * 0 m g 0 θ θ g g θ θ g ρ θ H θ β 0 m + H ρ β * 0 m g 0 θ θ g g s s g ρ s H s β 0 m )
+ ω c ( H θ β * 0 m g 0 ρ ρ g g ρ ρ g θ ρ H ρ β 0 m + H θ β * 0 m g g 0 ρ ρ g θ θ H θ β 0 m + H θ β * 0 m g 0 ρ ρ g g s s g θ s H s β 0 m )
+ ω c ( E ρ β * 0 m g g ρ ρ g 0 θ θ E ρ β 0 m + E ρ β * 0 m g 0 θ θ g g θ θ g ρ θ E θ β 0 m + E ρ β * 0 m g 0 θ θ g g s s g ρ s H s β 0 m )
+ ω c ( E θ β * 0 m g 0 ρ ρ g g ρ ρ g θ ρ E ρ β 0 m + E θ β * 0 m g g 0 ρ ρ g θ θ H θ β 0 m + H θ β * 0 m g 0 ρ ρ g g s s g θ s H s β 0 m ) ] ,
i E s β m g s s = c ω g g s s ( H θ β 0 m g 0 θ θ ρ H ρ β 0 m g 0 ρ ρ θ ) i g s s ( g s ρ g 0 ρ ρ E ρ β 0 m + g s θ g 0 θ θ E θ β 0 m )
i H s β m g s s = c ω g g s s ( E θ β 0 m g 0 θ θ ρ E ρ β 0 m g 0 ρ ρ θ ) i g s s ( g s ρ g 0 ρ ρ H ρ β 0 m + g s θ g 0 θ θ E θ β 0 m ) .

Metrics