Abstract

We introduce a quantum key distribution scheme based on four-photon coincidence measurements. This scheme offers a much higher degree of security than current quantum key distribution methods and minimizes problems due to photon losses and dark counts.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-distance practical quantum key distribution by entanglement swapping

Artur Scherer, Barry C. Sanders, and Wolfgang Tittel
Opt. Express 19(4) 3004-3018 (2011)

Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion

S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall
Opt. Express 13(18) 6709-6722 (2005)

Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion

L. Dovrat, M. Bakstein, D. Istrati, A. Shaham, and H. S. Eisenberg
Opt. Express 20(3) 2266-2276 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
    [Crossref]
  3. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
    [Crossref] [PubMed]
  4. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
    [Crossref] [PubMed]
  5. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref] [PubMed]
  6. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
    [Crossref] [PubMed]
  7. S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).
  8. H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
    [Crossref] [PubMed]
  9. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
    [Crossref]
  10. Y. H. Shih and M. H. Rubin, “Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,” Phys. Lett. A 204, 16–22 (1995).
  11. T. B. Pittman, “On the Use of Double Entanglement in Four-Photon Experiments,” Phys. Lett. A 204, 193–197 (1995).
    [Crossref]
  12. D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
    [Crossref]
  13. J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
    [Crossref] [PubMed]
  14. Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
    [Crossref]
  15. H. Weinfurter and M. Zukowski, “Four-Photon Entanglement From Down-Conversion,” Phys. Rev. A 64, 010102(R) (2001).
    [Crossref]
  16. F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
    [Crossref]
  17. S. P. Tewari and P. Hariharan, “Generation of entangled 4-photon states by parametric downconversion,” J. Mod. Opt. 44, 543–553 (1997).
    [Crossref]
  18. P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
    [Crossref]
  19. P. Hariharan and B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J. Mod. Opt. 47, 1739–1744 (2000).
  20. M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183, 133–137 (2000).
    [Crossref]
  21. P. Hariharan, “Simple, high-efficiency, single-photon trap detectors,” J. Opt. B: Quantum Semiclass. 1, 522–523 (1999).
    [Crossref]

2002 (1)

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

2001 (3)

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
[Crossref]

H. Weinfurter and M. Zukowski, “Four-Photon Entanglement From Down-Conversion,” Phys. Rev. A 64, 010102(R) (2001).
[Crossref]

2000 (6)

P. Hariharan and B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J. Mod. Opt. 47, 1739–1744 (2000).

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183, 133–137 (2000).
[Crossref]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

1999 (4)

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

P. Hariharan, “Simple, high-efficiency, single-photon trap detectors,” J. Opt. B: Quantum Semiclass. 1, 522–523 (1999).
[Crossref]

P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
[Crossref]

1997 (1)

S. P. Tewari and P. Hariharan, “Generation of entangled 4-photon states by parametric downconversion,” J. Mod. Opt. 44, 543–553 (1997).
[Crossref]

1995 (2)

Y. H. Shih and M. H. Rubin, “Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,” Phys. Lett. A 204, 16–22 (1995).

T. B. Pittman, “On the Use of Double Entanglement in Four-Photon Experiments,” Phys. Lett. A 204, 193–197 (1995).
[Crossref]

1992 (2)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Barnett, S. M.

S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).

Bechmann-Pasquinucci, H.

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

Bennett, C. H.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Bouwmeester, D.

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

Brassard, G.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

Burlakov, A. V.

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Chefles, A.

S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).

Chekhova, M. V.

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Daniell, M.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

De Moor, B.

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

Dehaene, J.

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

Ekert, A. K.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

Gasparoni, S.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

Gisin, N.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

Hariharan, P.

P. Hariharan and B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J. Mod. Opt. 47, 1739–1744 (2000).

P. Hariharan, “Simple, high-efficiency, single-photon trap detectors,” J. Opt. B: Quantum Semiclass. 1, 522–523 (1999).
[Crossref]

P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
[Crossref]

S. P. Tewari and P. Hariharan, “Generation of entangled 4-photon states by parametric downconversion,” J. Mod. Opt. 44, 543–553 (1997).
[Crossref]

Karabutova, O. A.

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Klyshko, D. N.

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Kulik, S. P.

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Lütkenhaus, N.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Mor, T.

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Oberparleiter, M.

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183, 133–137 (2000).
[Crossref]

Palma, G. M.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

Pan, J. -W.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
[Crossref]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

Peres, A.

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

Phoenix, S. J. D.

S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).

Pittman, T. B.

T. B. Pittman, “On the Use of Double Entanglement in Four-Photon Experiments,” Phys. Lett. A 204, 193–197 (1995).
[Crossref]

Rarity, J. G.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

Rubin, M. H.

Y. H. Shih and M. H. Rubin, “Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,” Phys. Lett. A 204, 16–22 (1995).

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Samuel, J.

P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
[Crossref]

Sanders, B. C.

P. Hariharan and B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J. Mod. Opt. 47, 1739–1744 (2000).

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

Shih, Y. H.

Y. H. Shih and M. H. Rubin, “Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,” Phys. Lett. A 204, 16–22 (1995).

Sinha, S.

P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
[Crossref]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

Tapster, P. R.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

Tewari, S. P.

S. P. Tewari and P. Hariharan, “Generation of entangled 4-photon states by parametric downconversion,” J. Mod. Opt. 44, 543–553 (1997).
[Crossref]

Tittel, W.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

Verschelde, H.

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

Verstraete, F.

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

Weihs, G.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

Weinfurter, H.

H. Weinfurter and M. Zukowski, “Four-Photon Entanglement From Down-Conversion,” Phys. Rev. A 64, 010102(R) (2001).
[Crossref]

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183, 133–137 (2000).
[Crossref]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

Zbinden, H.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

Zeilinger, A.

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

Zhan, M. S.

Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
[Crossref]

Zhao, Z.

Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
[Crossref]

Zukowski, M.

H. Weinfurter and M. Zukowski, “Four-Photon Entanglement From Down-Conversion,” Phys. Rev. A 64, 010102(R) (2001).
[Crossref]

J. Cryptol. (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).
[Crossref]

J. Mod. Opt. (3)

S. J. D. Phoenix, S. M. Barnett, and A. Chefles, “Three-state quantum cryptography,” J. Mod. Opt. 47, 507–516 (2000).

S. P. Tewari and P. Hariharan, “Generation of entangled 4-photon states by parametric downconversion,” J. Mod. Opt. 44, 543–553 (1997).
[Crossref]

P. Hariharan and B. C. Sanders, “Cavity-enhanced parametric down-conversion as a source of correlated photons,” J. Mod. Opt. 47, 1739–1744 (2000).

J. Opt. B: Quantum Semiclass. (2)

P. Hariharan, “Simple, high-efficiency, single-photon trap detectors,” J. Opt. B: Quantum Semiclass. 1, 522–523 (1999).
[Crossref]

P. Hariharan, J. Samuel, and S. Sinha “Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations,” J. Opt. B: Quantum Semiclass. 1, 199–205 (1999).
[Crossref]

Opt. Commun. (1)

M. Oberparleiter and H. Weinfurter, “Cavity-enhanced generation of polarization-entangled photon pairs,” Opt. Commun. 183, 133–137 (2000).
[Crossref]

Phys. Lett. A (2)

Y. H. Shih and M. H. Rubin, “Four-Photon Interference Experiment for the Testing of the Greenberger-Horne-Zeilinger Theorem,” Phys. Lett. A 204, 16–22 (1995).

T. B. Pittman, “On the Use of Double Entanglement in Four-Photon Experiments,” Phys. Lett. A 204, 193–197 (1995).
[Crossref]

Phys. Rev. A (4)

Z. Zhao, J. -W. Pan, and M. S. Zhan, “Practical Scheme for Entanglement Concentration,” Phys. Rev. A 64014301 (2001).
[Crossref]

H. Weinfurter and M. Zukowski, “Four-Photon Entanglement From Down-Conversion,” Phys. Rev. A 64, 010102(R) (2001).
[Crossref]

F. Verstraete, J. Dehaene, B. De Moor, and H. Verschelde, “Four Qubits Can Be Entangled in Nine Different Ways,” Phys. Rev. A 65, 052112 (2002).
[Crossref]

A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, D. N. Klyshko, and S. P. Kulik, “Polarization state of a biphoton:Quantum ternary logic,” Phys. Rev. A 60, R4209–R4212 (1999).
[Crossref]

Phys. Rev. Lett. (7)

H. Bechmann-Pasquinucci and A. Peres, “Quantum cryptography with 3-state systems,” Phys. Rev. Lett. 85, 3313–3316 (2000).
[Crossref] [PubMed]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time Bell states,” Phys. Rev. Lett. 84, 4737–.... (2000).
[Crossref] [PubMed]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett. 69, 1293–1295 (1992).
[Crossref] [PubMed]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref] [PubMed]

G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on Practical Quantum Cryptography,” Phys. Rev. Lett. 85, 1330–1333 (2000).
[Crossref] [PubMed]

D. Bouwmeester, J. -W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, “Observation of Three-Photon Greenberger-Horne-Zeilinger Entanglement,” Phys. Rev. Lett. 82, 1345–1349 (1999).
[Crossref]

J. -W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental Demonstration of Four-Photon Entanglement and High-Fidelity Teleportation,” Phys. Rev. Lett. 86, 4435–4438 (2001).
[Crossref] [PubMed]

Other (1)

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” in Proc. of IEEE Inter. Conf. on Computers, Systems and Signal Processing, Bangalore, India (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Schematic of a system for distributing a cryptographic key using four-photon interferometry.

Tables (1)

Tables Icon

Table 1. Conversion of observations of coincidences to a binary key. The first column presents the two allowed (random) values of ΔϕA , and the third row (second column) presents these two (random) values of ΔϕB : the instances for which four-fold coincidences yield bits for the key are signified by the bit (0 or 1) chosen in those instances.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J ϕ A ϕ B = cos ( ϕ A + ϕ B ) .
P 1234 = 1 + cos Φ 2 ,
Φ = ϕ 1 + ϕ 2 + ϕ 3 + ϕ 4 ,

Metrics