Abstract

Numerical simulations are used to study the temporal and spectral characteristics of broadband supercontinua generated in photonic crystal fiber. In particular, the simulations are used to follow the evolution with propagation distance of the temporal intensity, the spectrum, and the cross-correlation frequency resolved optical gating (XFROG) trace. The simulations allow several important physical processes responsible for supercontinuum generation to be identified and, moreover, illustrate how the XFROG trace provides an intuitive means of interpreting correlated temporal and spectral features of the supercontinuum. Good qualitative agreement with preliminary XFROG measurements is observed.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler, A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  2. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, D. J. Richardson, �??Soliton transmission and supercontinuum generation in holey fiber using a diode pumped Ytterbium fiber source,�?? Opt. Express 10, 382�??387 (2002); <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-382">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-8-382</a>
    [CrossRef] [PubMed]
  3. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, �??Supercontinuum generation in tapered fibres,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  4. A. V. Husakou and J. Hermann, �??Supercontinuum Generation of Higher Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  5. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  6. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  7. A. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924-926 (2002).
    [CrossRef]
  8. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180-1182 (2002)
    [CrossRef]
  9. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, �??Femtosecond distributed soliton spectrumin fibers,�?? J. Opt. Soc. Am. B 6, 1149-1166 (1989).
    [CrossRef]
  10. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, �??Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,�?? Opt. Lett. 11, 464-466 (1986).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Second Edition (2001).
  12. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibers,�?? Electron. Lett. 37, 1510-1512 (2001).
    [CrossRef]
  13. L. Xu, X. Gu, M. Kimmel, P. O�??Shea, R. Trebino, A. Galvanauskas, �??Ultra-broadband IR continuum generation and its phase measurement using cross-correlation FROG,�?? Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, Washington, D.C., 2001) CTuN1.
  14. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O�??Shea, A. P. Shreenath, R. Trebino, R. S. Windeler, �??Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure fiber continuum," Opt. Lett. 27, 1174-1176 (2002).
    [CrossRef]
  15. K. J. Blow, D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  16. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]

Electron. Lett. (1)

B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, S. Coen, �??Tunable near-infrared femtosecond soliton generation in photonic crystal fibers,�?? Electron. Lett. 37, 1510-1512 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. J. Blow, D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

A. V. Husakou and J. Hermann, �??Supercontinuum Generation of Higher Order Solitons by Fission in Photonic Crystal Fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Second Edition (2001).

L. Xu, X. Gu, M. Kimmel, P. O�??Shea, R. Trebino, A. Galvanauskas, �??Ultra-broadband IR continuum generation and its phase measurement using cross-correlation FROG,�?? Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, Washington, D.C., 2001) CTuN1.

Supplementary Material (1)

» Media 1: MOV (894 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Spectral and (b) temporal evolution in microstructure fiber of an injected 10kW peak power 30 fs input pulse injected at 800 nm.

Fig. 2.
Fig. 2.

Detailed view of output (a) temporal and (b) spectral characteristics.

Fig. 3.
Fig. 3.

(917 KB) Calculated XFROG trace with its structure correlated with the intensity and spectrum showing evolution with propagation distance. Note the nonlinear wavelength axis used in the plot of the fundamental SC spectrum.

Fig. 4.
Fig. 4.

Measured and Retrieved XFROG traces with the structure of the measured trace correlated with the retrieved intensity and spectrum. Note the nonlinear wavelength axis used in the plot of the fundamental SC spectrum. The exploded view illustrates the low amplitude oscillations in the retrieved intensity.

Metrics