Abstract

We report the guidance of dry micron-sized dielectric particles in hollow core photonic crystal fiber. The particles were levitated in air and then coupled to the air-core of the fiber using an Argon ion laser beam operating at a wavelength of 514 nm. The diameter of the hollow core of the fiber is 20 μm. A laser power of 80 mW was sufficient to levitate a 5 μm diameter polystyrene sphere and guide it through a ∼150 mm long hollow-core crystal photonic fiber. The speed of the guided particle was measured to be around 1 cm/s.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24 (4), 156 (1970).
    [CrossRef]
  2. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef] [PubMed]
  3. H.Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
    [CrossRef]
  4. M. J. Renn, O. Vdovin, C. E. Wieman et al., �??Laser-Guided Atoms in Hollow-core Optical fiber,�?? Phys. Rev. Lett. 75, 3253 (1995).
    [CrossRef] [PubMed]
  5. A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987).
    [CrossRef] [PubMed]
  6. E. Higurashi, H. Ukita, H. Tanaka et al., �??Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209-2210 (1994).
    [CrossRef]
  7. L. P. Ghislain andW. W. Webb, �??Scanning-force microscope based on an optical trap,�?? Opt. Lett. 18, 1678-1680 (1992).
    [CrossRef]
  8. M. J. Renn, R. Pastel, and H. J. Lewandowski, �??Laser Guidance and Trapping of Mesoscale Particles in Hollow-core Optical fibers,�?? Phys. Rev. Lett. 82 (7), 1574 (1999).
    [CrossRef]
  9. E. A. J. Marcatili and R. A. Schmeltzer, �??Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,�?? Bell Syst. Tech. J. (July 1964), 1783-1809 (1964).
  10. M. J. Renn and R. Pastel, �??Particle manipulation and surface patterning by laser guidance,�?? J. Vac. Sci. Technol. B 16 (6), 3859 (1998).
    [CrossRef]
  11. R.F. Cregan, B. J. Mangan, J. C. Knight et al., �??Single-Mode Photonic Band Gap Guidance of light in Air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  12. J. C. Knight and P. St. J. Russel, �??NewWays to Guide Light,�?? Science 296, 276-277 (2002).
    [CrossRef] [PubMed]
  13. J. C. Knight, T. A. Birks, P. St. J. Russell et al., "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  14. K. F. Ren, G. Grehan, and G. gouesbet, �??Prediction of the reverse radiation pressure by generalized Lorenz-Mie theory,�?? Appl. Opt. 35, 2702-2710 (1996).
    [CrossRef] [PubMed]
  15. R. C. Gauthier and S. Wallace, �??Optical levitation of spheres: analytical development and numerical computations of the force equations,�?? J. Opt. Sci. Am. B 12, 1680-1685 (1995).
    [CrossRef]
  16. R. C. Gauthier, �??Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,�?? J. Opt. Sci. Am. B 14, 782-789 (1997).
    [CrossRef]
  17. S. Nemoto and H. Togo, �??Axial force acting on a dielectric sphere in a focused laser beam,�?? Appl. Opt. 37 (27), 6386 (1998).
    [CrossRef]
  18. J. A. West, J.C. Fajardo, M.T. Gallagher et al., �??Demonstration of an IR-optimized air-core photonic band-gap fiber,�?? presented at the ECOC 2000. 26th European Conference on Optical Communication, Berlin, Germany, 2000 (unpublished).
  19. F. Benabid, J. C. Knight, and P. St. J. Russell, (in preparation).
  20. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm et al., �??Observation of a single-beam gradient force optical trap for dielectric particles,�?? Opt. Lett. 11 (5), 288 (1986).
    [CrossRef] [PubMed]
  21. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, N. J., 1965).
  22. N. Venkataraman, M. T. Gallagher, C. M. Smith et al., �??Low Loss (13 dB/km) Air Core Photonic Band-Gap Fibre,�?? presented at the Ecoc 2002, Copenhagen, 2002 (unpublished).

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

E. Higurashi, H. Ukita, H. Tanaka et al., �??Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209-2210 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, �??Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,�?? Bell Syst. Tech. J. (July 1964), 1783-1809 (1964).

J. Am. Chem. Soc. (1)

H.Misawa, N. Kitamura, and H. Masuhara, J. Am. Chem. Soc. 113, 7859 (1991).
[CrossRef]

J. Opt. Sci. Am. B (2)

R. C. Gauthier and S. Wallace, �??Optical levitation of spheres: analytical development and numerical computations of the force equations,�?? J. Opt. Sci. Am. B 12, 1680-1685 (1995).
[CrossRef]

R. C. Gauthier, �??Trapping model for the low-index ring-shaped micro-object in a focused, lowest-order Gaussian laser-beam profile,�?? J. Opt. Sci. Am. B 14, 782-789 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. J. Renn and R. Pastel, �??Particle manipulation and surface patterning by laser guidance,�?? J. Vac. Sci. Technol. B 16 (6), 3859 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (3)

A. Ashkin, �??Acceleration and trapping of particles by radiation pressure,�?? Phys. Rev. Lett. 24 (4), 156 (1970).
[CrossRef]

M. J. Renn, R. Pastel, and H. J. Lewandowski, �??Laser Guidance and Trapping of Mesoscale Particles in Hollow-core Optical fibers,�?? Phys. Rev. Lett. 82 (7), 1574 (1999).
[CrossRef]

M. J. Renn, O. Vdovin, C. E. Wieman et al., �??Laser-Guided Atoms in Hollow-core Optical fiber,�?? Phys. Rev. Lett. 75, 3253 (1995).
[CrossRef] [PubMed]

Science (3)

A. Ashkin and J. M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

R.F. Cregan, B. J. Mangan, J. C. Knight et al., �??Single-Mode Photonic Band Gap Guidance of light in Air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

J. C. Knight and P. St. J. Russel, �??NewWays to Guide Light,�?? Science 296, 276-277 (2002).
[CrossRef] [PubMed]

Other (4)

J. A. West, J.C. Fajardo, M.T. Gallagher et al., �??Demonstration of an IR-optimized air-core photonic band-gap fiber,�?? presented at the ECOC 2000. 26th European Conference on Optical Communication, Berlin, Germany, 2000 (unpublished).

F. Benabid, J. C. Knight, and P. St. J. Russell, (in preparation).

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Cliffs, N. J., 1965).

N. Venkataraman, M. T. Gallagher, C. M. Smith et al., �??Low Loss (13 dB/km) Air Core Photonic Band-Gap Fibre,�?? presented at the Ecoc 2002, Copenhagen, 2002 (unpublished).

Supplementary Material (2)

» Media 1: MPG (168 KB)     
» Media 2: MPG (2290 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up of the particle levitation and guidance. See text for details.

Fig. 2.
Fig. 2.

(a) The transmission spectrum of the HC-PCF used here for particle levitation. (b) The micrograph of the exit end of a ∼5 cm long HC-PCF as it is seen from a microscope.

Fig. 3.
Fig. 3.

(a) The schematic of the particle levitation (b) The axial force as a function of the distance waist-particle. The power is 80 mW, the solid circle represent the experimental data.

Fig. 4.
Fig. 4.

A sequence of a polystyrene particle (pointed out by an arrow) being levitated. The time spacing between consecutive frames is 67 ms, and each frame corresponds to a captured scene size of 2.5x2.5 mm2. The sequence is extracted from the movie (2.24 MB) (see fig. 5) of levitated particles and coupled to the fiber.

Fig. 5.
Fig. 5.

(2.24 MB) video of real time particles levitation.

Fig 6.
Fig 6.

Calculated magnitude of the axial force (Fz ) and the gradient force (F grad) on 5 μm diameter polystyrene particle at the entrance of 20 μm hollow-core HC-PCF in function of the radial position of the sphere central position. The laser power is 80 mW and coupled to lowest-loss mode.

Fig. 7.
Fig. 7.

Sequence of a polystyrene particle (pointed out by an arrow) being guided into HC-PCF. The time spacing between two consecutive frames is 67 ms. Each frame corresponds to a captured scene size of 0.9x0.9 mm2. The frames were extracted from the movie (176 KB).

Fig 8.
Fig 8.

(176 KB) video showing a polystyrene particle being guided in ∼1 mm section of the HC-PCF.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d F z = n P 0 c I r z d A ,
m z ̈ = m g 6 π η air a z ˙ + F z ( z ) ,
I r z I 0 J 0 [ 2.4 r r co ] 2 e α loss z ,
F z = P 0 c 128 π 5 a 6 3 λ 4 ( n 2 1 n 2 + 2 ) 2 1 0.846 r co 2 J 0 2 [ 2.405 r r co ]
F grad = P 0 c π a 3 2 ( n 2 1 n 2 + 2 ) 4.81 0.846 r co 3 J 0 [ 2.405 r r co ] J 1 [ 2.405 r r co ]
k = P 0 c π a 3 2 ( n 2 1 n 2 + 2 ) 2.4 0.846 r co 4

Metrics