Abstract

Holographic gratings have been written on the surface and inside transparent polymethyl methacrylate (PMMA) with individual 130 fs laser pulses at 800 nm. A surface-relief grating is fabricated by ablation and the diffraction efficiency is measured to be about 20%. A volume grating inside PMMA is formed by the change in the refractive index induced by the two-beam interference fringes. Holographic data storage on the surface is realized when one beam carries information. The stored information can be nondestructively reconstructed when the fluence of the read beam is reduced below the threshold.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. P. A. Blanche, B. Kippelen, A. Schulzgen, C. Fuentes-Hernandez, G. Ramos-Ortiz, J. F. Wang, E. Hendrickx, N. Peyghambarian and S. R. Marder, �??Photorefractive polymers sensitized by two-photo absorption,�?? Opt. Lett. 27, 19-21 (2002).
    [CrossRef]
  2. S. M. Kirkpatrick, J.W. Baur, C. M. Clark, L. R. Denny, D.W. Tomlin, B. R. Reinhardt, R. Kannan and M. O. Stone, �??Holographic recording using two-photo-induced photopolymerization,�?? Appl. Phys. A 69, 461-464 (1999).
    [CrossRef]
  3. D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, L. Natarajan, V. Tondiglia and T. J. Bunning, �??Electrically switchable reflection holograms formed using two-photon photopolymerization,�?? Appl. Phys. A 74, 767-772 (2002).
    [CrossRef]
  4. C. Diamond, Y. Boiko and S. Esener, �??Two-photon holography in 3-D photopolymer host-guest matrix,�?? Opt. Express 6, 64-68 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-64">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-3-64</a>.
    [CrossRef] [PubMed]
  5. J. Si, J. Qiu, J. Zhai, Y. Shen and K. Hirao, �??Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 80, 359-361 (2002).
    [CrossRef]
  6. Th. Schneider and J. Reif, �??Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena,�?? Phys. Rev. A 65, 023801-1-10 (2002).
    [CrossRef]
  7. E. S.Manliloff, D. Vacar, D. W. McBranch, H.Wang, B. R. Mattes, J. Gao and A. J. Heeger, �??Ultrafast holography using charge-transfer polymers,�?? Opt. Commun. 141, 243-246 (1997).
    [CrossRef]
  8. B. Kraabel, A. Malko, J. Hollingsworth and V. I. Klimov, �??Ultrafast dynamic holography in nanocrystal solids,�?? Appl. Phys. Lett. 78, 1814-1816 (2001).
    [CrossRef]
  9. H. G. de Chatellus and E. Freysz, �??Characterization and dynamics of gratings induced in glasses by femtosecond pulses,�?? Opt. Lett. 27, 1165-1167 (2002).
    [CrossRef]
  10. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano and H. Hosono, �??Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,�?? Appl. Phys. B: Lasers Opt. 71, 119-121 (2000).
    [CrossRef]
  11. K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, �??Holographic encoding of permanent gratings embedded in diamond by two beam interference of a single femtosecond near-infrared laser pulse,�?? Jpn. J. Appl. Phys. Part 2, 39, L767-L769 (2000).
    [CrossRef]
  12. K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, �??Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,�?? Appl. Phys. Lett. 78, 1038-1040 (2001).
    [CrossRef]
  13. K. Kawamura, N. Sarukura, M. Hirano, N. Ito and H. Hosono, �??Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,�?? Appl. Phys. Lett. 79, 1228-1130 (2001).
    [CrossRef]
  14. Y. Li,W.Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii and Y. Jiang, �??Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,�?? Appl. Phys. Lett. 80, 1508-1510 (2002).
    [CrossRef]
  15. Y. Li, W. Watanabe, K. Itoh and X. Sun, �??Holographic data storage on nonphotosensitive glass with a single femtosecond laser pulse,�?? Appl. Phys. Lett. 81, 1952-1954 (2002).
    [CrossRef]

Appl. Phys. A

S. M. Kirkpatrick, J.W. Baur, C. M. Clark, L. R. Denny, D.W. Tomlin, B. R. Reinhardt, R. Kannan and M. O. Stone, �??Holographic recording using two-photo-induced photopolymerization,�?? Appl. Phys. A 69, 461-464 (1999).
[CrossRef]

D. J. Pikas, S. M. Kirkpatrick, D. W. Tomlin, L. Natarajan, V. Tondiglia and T. J. Bunning, �??Electrically switchable reflection holograms formed using two-photon photopolymerization,�?? Appl. Phys. A 74, 767-772 (2002).
[CrossRef]

Appl. Phys. B

K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano and H. Hosono, �??Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses,�?? Appl. Phys. B: Lasers Opt. 71, 119-121 (2000).
[CrossRef]

Appl. Phys. Lett.

K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, �??Holographic encoding of fine-pitched micrograting structures in amorphous SiO2 thin films on silicon by a single femtosecond laser pulse,�?? Appl. Phys. Lett. 78, 1038-1040 (2001).
[CrossRef]

K. Kawamura, N. Sarukura, M. Hirano, N. Ito and H. Hosono, �??Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses,�?? Appl. Phys. Lett. 79, 1228-1130 (2001).
[CrossRef]

Y. Li,W.Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii and Y. Jiang, �??Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses,�?? Appl. Phys. Lett. 80, 1508-1510 (2002).
[CrossRef]

Y. Li, W. Watanabe, K. Itoh and X. Sun, �??Holographic data storage on nonphotosensitive glass with a single femtosecond laser pulse,�?? Appl. Phys. Lett. 81, 1952-1954 (2002).
[CrossRef]

J. Si, J. Qiu, J. Zhai, Y. Shen and K. Hirao, �??Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser,�?? Appl. Phys. Lett. 80, 359-361 (2002).
[CrossRef]

B. Kraabel, A. Malko, J. Hollingsworth and V. I. Klimov, �??Ultrafast dynamic holography in nanocrystal solids,�?? Appl. Phys. Lett. 78, 1814-1816 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

K. Kawamura, N. Sarukura, M. Hirano and H. Hosono, �??Holographic encoding of permanent gratings embedded in diamond by two beam interference of a single femtosecond near-infrared laser pulse,�?? Jpn. J. Appl. Phys. Part 2, 39, L767-L769 (2000).
[CrossRef]

Opt. Commun.

E. S.Manliloff, D. Vacar, D. W. McBranch, H.Wang, B. R. Mattes, J. Gao and A. J. Heeger, �??Ultrafast holography using charge-transfer polymers,�?? Opt. Commun. 141, 243-246 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

Th. Schneider and J. Reif, �??Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena,�?? Phys. Rev. A 65, 023801-1-10 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig.1.
Fig.1.

Optical microscope image of a surface-relief grating on PMMA written with pulse energy of each beam of ∼80 μJ.

Fig.2.
Fig.2.

(Top) AFM image of the grating structure and (bottom) the cross-sectional profile.

Fig.3.
Fig.3.

(a) A refractive index grating inside PMMA. The pulse energy of each recording beam was ∼80 μJ. (b) The diffraction pattern. The zero-order beam was attenuated by a 10% neutral density filter.

Fig.4.
Fig.4.

Holographic data storage on the surface of PMMA. (a) A data mask. (b) The corresponding hologram recorded with the pulse energy of each beam of ∼80 μJ. (c) The reconstruction image of the data mask.

Metrics