Abstract

The characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength are analyzed both experimentally and numerically. The spectrogram of pulse trapping is observed by use of the cross-correlation frequency-resolved optical gating technique, and the phenomenon of pulse trapping is confirmed directly. The pulse trapping is numerically analyzed by use of the coupled strict nonlinear Schrödinger equations, and the numerical results are in good agreement with the experimental ones. It is clarified that the pulse trapping results from the sequential cross-phase modulation by the Raman-shifted soliton pulse.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. N. Nishizawa and T. Goto, �??Compact system of wavelength tunable femtosecond soliton pulse generation using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  2. N. Nishizawa, R. Okamura, and T. Goto, �??Widely wavelength tunable ultrashort soliton pulse and antistokes pulse generation for wavelengths of 1.32-1.75 m,�?? Jpn. J. Appl. Phys. 39, L409-L411 (2000).
    [CrossRef]
  3. N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
    [CrossRef]
  4. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch,W. J. Wadsworth, and P. St. J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  6. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  7. X. Liu, C. Xu, W. H. Knox, J. K. Chanadalia, B. J. Eggleton, S. G. Kosinski and R. S. Windeler, �??Soliton self-frequency shift in a tapered air-silica microstructure fiber,�?? Opt. Lett. 26, 358-360 (2001).
    [CrossRef]
  8. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, �??Tunable, femtosecond pulse source operating in the range 1.06-1.33 m based on an Yb3+-doped holey fiber amplifier,�?? J. Opt. Soc. Am. B 26, 1286-1294 (2002).
    [CrossRef]
  9. N. Nishizawa, Y. Ito, and T. Goto, �??0.78-0.90-m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 14, 986-988 (2002).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear fiber optics, third ed. (Academic, San Diego, Calif. 2001).
  11. M. N. Islam, C. D. Poole, and J. P. Gordon, �??Soliton trapping in birefringent optical fibers,�?? Opt. Lett. 14, 1011-1013 (1989).
    [CrossRef] [PubMed]
  12. N. Nishizawa and T. Goto, �??Trapped pulse generation by femtosecond soliton pulse in birefringent optical fibers,�?? Opt. Express 10, 256-261 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-256">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-256</a>.
    [CrossRef] [PubMed]
  13. N. Nishizawa and T. Goto, �??Pulse trapping by ultrashort soliton pulses in optical fibers across zerodispersion wavelength,�?? Opt. Lett. 27, 152-154 (2002).
    [CrossRef]
  14. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, �??Optical solitary waves induced by cross-phase modulation,�?? Opt. Lett. 13, 871-873 (1988).
    [CrossRef] [PubMed]
  15. V. V. Afanas�??ev, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, �??Nonlinear pairing of light and dark optical solitons,�?? JETP Lett. 48, 638-642 (1988).
  16. V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, �??Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,�?? IEEE J. Quantum Electron. 25, 2656-2664 (1989).
    [CrossRef]
  17. S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Phys. Stat. Sol. (b) 206, 119-124 (1998).
    [CrossRef]
  18. N. Nishizawa and T. Goto, �??Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlated frequency resolved optical gating,�?? Opt. Express 8, 328-335 (2001) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328</a>.
    [CrossRef] [PubMed]
  19. F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  20. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Select. Topics in Quantum Electron. 5, 1385-1391 (1999).
    [CrossRef]
  21. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  22. B. R. Washburn, S. E. Ralph, and R. S. Windeler, �??Ultrashort pulse propagation in air-silica microstructure fiber,�?? Opt. Express 10, 575-580 (2002) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>.
    [CrossRef] [PubMed]

IEEE J. Quantum Electron.

V. V. Afanasjev, E. M. Dianov, and V. N. Serkin, �??Nonlinear pairing of short bright and dark soliton pulses by phase cross modulation,�?? IEEE J. Quantum Electron. 25, 2656-2664 (1989).
[CrossRef]

IEEE J. Select. Top. Quantum Electron.

T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, �??Silica-based functional fibers with enhanced nonlinearity and their applications,�?? IEEE J. Select. Topics in Quantum Electron. 5, 1385-1391 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch,W. J. Wadsworth, and P. St. J. Russell, �??Anomalous dispersion in photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 12, 807-809 (2000).
[CrossRef]

N. Nishizawa and T. Goto, �??Compact system of wavelength tunable femtosecond soliton pulse generation using optical fibers,�?? IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

N. Nishizawa, Y. Ito, and T. Goto, �??0.78-0.90-m wavelength-tunable femtosecond soliton pulse generation using photonic crystal fiber,�?? IEEE Photon. Technol. Lett. 14, 986-988 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, �??Tunable, femtosecond pulse source operating in the range 1.06-1.33 m based on an Yb3+-doped holey fiber amplifier,�?? J. Opt. Soc. Am. B 26, 1286-1294 (2002).
[CrossRef]

JETP Lett.

V. V. Afanas�??ev, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, �??Nonlinear pairing of light and dark optical solitons,�?? JETP Lett. 48, 638-642 (1988).

Jpn. J. Appl. Phys.

N. Nishizawa, R. Okamura, and T. Goto, �??Widely wavelength tunable ultrashort soliton pulse and antistokes pulse generation for wavelengths of 1.32-1.75 m,�?? Jpn. J. Appl. Phys. 39, L409-L411 (2000).
[CrossRef]

N. Nishizawa and T. Goto, �??Widely broadened super continuum generation using highly nonlinear dispersion shifted fibers and femtosecond fiber laser,�?? Jpn. J. Appl. Phys. 40, L365-L367 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Stat. Sol.

S. Linden, H. Giessen, and J. Kuhl, �??XFROG-a new method for amplitude and phase characterization of weak ultrashort pulses,�?? Phys. Stat. Sol. (b) 206, 119-124 (1998).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, �??Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,�?? Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Other

G. P. Agrawal, Nonlinear fiber optics, third ed. (Academic, San Diego, Calif. 2001).

Supplementary Material (3)

» Media 1: MOV (222 KB)     
» Media 2: MOV (690 KB)     
» Media 3: MOV (1172 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of pulse trapping by ultrashort soliton pulse across the zero-dispersion wavelength.

Fig. 2.
Fig. 2.

Variation of optical spectra of output pulses for pulse trapping. The dotted line represents the delay time in fiber owing to chromatic dispersion.

Fig. 3.
Fig. 3.

Characteristics of wavelength shift of soliton and trapped pulse as a function of power of soliton pulse in front of PM-HN-DSF2.

Fig. 4.
Fig. 4.

Observed spectrogram of output pulses when pulse trapping occurs. The fiber length is 10 m.

Fig. 5.
Fig. 5.

((a) 223KB, (b) 690KB, (c) 1.17MB) Variation of (a) temporal and (b) spectral waveforms, and (c) spectrogram of soliton and trapped pulse. The corresponding propagation length is (a)(c) 0-15 m and (b) 0-150 m. In order to clarify the behavior of pulse trapping, the signal pulse is enlarged. In (a) and (c), the horizontal axis represents the magnitude of T, which is the temporal axis moving with the initial group velocity of the soliton pulse at fiber input. In (a) and (b), the red and blue lines show the soliton and signal pulses, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z + i β 2 A 2 2 A T 2 β 3 A 6 3 A T 3 = i γ ( A 2 A + 2 B 2 A + i ω 0 A A 2 A T T R A A 2 T )
B z d B T + i β 2 B 2 2 B T 2 β 3 B 6 3 A T 3 = i γ ( B 2 B + 2 A 2 B + i ω 0 B B 2 B T T R B B 2 T )

Metrics