Abstract

Using multiple temporally-overlapped, frequency offset and phase-tuned, linear frequency chirps, a new method of multi-GHz optical coherent transient optical pulse shaping and processing in inhomogeneously broadened rare-earth doped crystals is proposed. Using this technique with properly chirped laser sources, multi-GHz processing can be controlled with conventional low-bandwidth electronics and optical modulators. Specifically, this technique enables pulse shaping in the MHz to THz frequency regime with time-bandwidth-products exceeding 100,000, filling the gap between the operating regimes of femtosecond pulse shaping and analog electronics. The low bandwidth (~20 MHz) proof-of-concept demonstrations presented in this paper include pulse train creation, self-convolution, auto-correlation, and chirped pulse compression.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A.M. Weiner, �??Femtosecond optical pulse shaping and processing,�?? Prog. Quant. Electron. 19, 161 (1995).
    [CrossRef]
  2. H. Kawashima, M.M. Wefers, and K.A. Nelson, �??Single-pulse and multiple-pulse femtosecond spectroscopy: progress toward collective mode-selective chemistry,�?? Physica B 219&220, 734 (1996).
    [CrossRef]
  3. X. Ribeyre, C. Rouyer, F. Rauolt, D. Husson, C. Sauteret, and A. Migus, �??All-optical programmable shaping of narrow-band nanosecond pulse with picosecond accuracy by use of adapted chirps and quadratics nonlinearities,�?? Opt. Lett. 26, 1173 (2001).
    [CrossRef]
  4. H. Schwoerer, D. Erni, and A. Rebane, �??Holography in frequency selective media III. Spectral synthesis of arbitrary time-domain pulse shapes,�?? J. Opt. Soc. Am. B 12, 1083 (1995).
    [CrossRef]
  5. H. Sónajalg, A. Gorokhovskii, R. Kaarli, V. Palm, M.Rätsep and P. Saari, �??Optical Pulse Shaping by Filters Based on Spectral Hole Burning,�?? Opt. Commun. 71, 377 (1989)
    [CrossRef]
  6. S. Altner, S. Bernet, A. Renn, E. Maniloff, F. Graf, U.P. Wild, �??Spectral holeburning and holography VI: Photon echoes form cw spectrally programmed holograms in a Pr3+:Y2SiO5 crystal,�?? Opt. Commun. 120, 103 (1995)
    [CrossRef]
  7. G.C. Bjorklund, �??Optical pulse shaping device and method,�?? U.S. Patent 4 306 771 (1981).
  8. R. L. Cone, R. W. Equall, Y. Sun, R.M. Macfarlane, and R. Hutcheson, �??Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,�?? Laser-Phys. 5, 573 (1995).
  9. R. Reibel, Z. Barber, M. Tian, W.R. Babbitt, �??Temporally overlapped linear frequency-chirped pulse programming for true-time-delay applications,�?? Opt. Lett. 27, 494 (2002).
    [CrossRef]
  10. R. Reibel, Z. Barber, M. Tian, W.R. Babbitt, �??High Bandwidth Spectral Gratings Programmed with Linear Frequency Chirps,�?? J. of Lumin. 98, 355 (2002)
    [CrossRef]
  11. L. Ménager, L. Caberet, I. Lorgeré, and J.-L. Le Gouët, �??Diode Laser extended cavity for broad-range fast ramping,�?? Opt. Lett. 25, 1246 (2000).
    [CrossRef]
  12. L. Levin, �??Mode-hop-free electro-optically tuned diode laser,�?? Opt. Lett. 27, 237 (2002).
    [CrossRef]
  13. X. Wang, M. Afzelius, N. Ohlsson, U. Gustafsson, S. Kröll, �??Coherent transient data-rate conversion and data transformation,�?? Opt. Lett. 25, 945 (2000).
    [CrossRef]
  14. .S. Bai and T.W. Mossberg, �??Experimental studies of photon-echo pulse compression,�?? Opt. Lett. 11, 30 (1986)
    [CrossRef] [PubMed]
  15. L. Ménager, I. Lorgeré, J.-L. Le Gouët, R. Mohan Krishna, and S. Kröll, �??Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes,�?? Opt. Lett. 24, 927 (1999)
    [CrossRef]
  16. R. Reibel, Z. Barber, M. Tian, W.R. Babbitt, Z. Cole, K.D. Merkel, �??Amplification of High Bandwidth Phase Modulated signals at 793nm,�?? J. Opt. Soc. Am. B 19, 2315 (2002)
    [CrossRef]
  17. K.D. Merkel andW.R. Babbitt, �??Compensation for homogeneous dephasing in coherent transient optical memories and processors,�?? Opt. Commun. 128, 136 (1996)
    [CrossRef]

J. Lumin. (1)

R. Reibel, Z. Barber, M. Tian, W.R. Babbitt, �??High Bandwidth Spectral Gratings Programmed with Linear Frequency Chirps,�?? J. of Lumin. 98, 355 (2002)
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser-Phys. (1)

R. L. Cone, R. W. Equall, Y. Sun, R.M. Macfarlane, and R. Hutcheson, �??Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,�?? Laser-Phys. 5, 573 (1995).

Opt. Commun. (3)

H. Sónajalg, A. Gorokhovskii, R. Kaarli, V. Palm, M.Rätsep and P. Saari, �??Optical Pulse Shaping by Filters Based on Spectral Hole Burning,�?? Opt. Commun. 71, 377 (1989)
[CrossRef]

S. Altner, S. Bernet, A. Renn, E. Maniloff, F. Graf, U.P. Wild, �??Spectral holeburning and holography VI: Photon echoes form cw spectrally programmed holograms in a Pr3+:Y2SiO5 crystal,�?? Opt. Commun. 120, 103 (1995)
[CrossRef]

K.D. Merkel andW.R. Babbitt, �??Compensation for homogeneous dephasing in coherent transient optical memories and processors,�?? Opt. Commun. 128, 136 (1996)
[CrossRef]

Opt. Lett. (7)

Physica B (1)

H. Kawashima, M.M. Wefers, and K.A. Nelson, �??Single-pulse and multiple-pulse femtosecond spectroscopy: progress toward collective mode-selective chemistry,�?? Physica B 219&220, 734 (1996).
[CrossRef]

Prog. Quant. Electron. (1)

A.M. Weiner, �??Femtosecond optical pulse shaping and processing,�?? Prog. Quant. Electron. 19, 161 (1995).
[CrossRef]

Other (1)

G.C. Bjorklund, �??Optical pulse shaping device and method,�?? U.S. Patent 4 306 771 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The TOLFC pulse shaping process. Multiple linear frequency chirps with different starting frequencies (dotted lines) are temporally overlapped with a single higher frequency reference chirp (dashed line). Later a brief probe pulse is diffracted off the grating producing multiple echoes. In the real programming process, the maximum frequency offset is much less than the bandwidth of the chirps.

Fig 2.
Fig 2.

The TOLFC chirp compression process. Two temporally overlapped chirps with different chirp rates and frequency offsets create a linearly-chirped, time-delay grating, which compresses the probe chirp into a delayed transform-limited pulse.

Fig. 3
Fig. 3

The echo output of the pulse shaper probed with a 100ns brief pulse. Output is the binary representation of the 11 bit Barker code (11100010010) in (a) binary amplitude modulated (0,1) format and (b) a binary phase modulated (0,π) format.

Fig 4.
Fig 4.

The calculated (dashed curve) and experimental (solid curve) output of the pulse shaper programmed with the (a) time reverse of the bi-phase 5 bit Barker code (1,-1,1,1,1) and (b) the time forward (1,1,1,-1,1). The operations of (a) self-convolution and (b) auto-correlation were performed on the probe pulse (1,-1,1,1,1).

Fig. 5.
Fig. 5.

Test of chirped pulse compression. A 1 μs, 20 MHz chirp (light curve) was diffracted off a chirp compressing grating producing the narrow echo (dark curve). The full width half max of the echo measured at one quarter the intensity is 64 ns, close to the bandwidth limit. The probe and echo are plotted on different scales.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = n = 1 N A n b a ( t )
E 2 ( t ) C 1 ( t ) n = 1 N A n exp ( iαnτt i ω 1 + i ½ α ( ) 2 )
E 2 ( t ) C 1 ( t ) n = 1 N A n exp ( inδt i ω 1 n δ α + i ( ) 2 α )

Metrics