Abstract

Sharp coupling anomalies exist in a SiGe superlattice buried in a silicon-on-insulator waveguide structure. We study these anomalies using a rigorous coupled wave analysis and examine their suitability for silicon-compatible waveguide-mode resonant filters for optical telecommunications. Active functions could include optical detection, switching, and modulation. We predict that a very weak, sub band-edge absorption can improve filter contrast or provide high quantum efficiency detection.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. G. Moharam and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 73, 1105 (1983).
    [CrossRef]
  2. D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, �??Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,�?? Opt. Lett. 23, 700 (1998).
    [CrossRef]
  3. S. M. Norton, G. M. Morris, and T. Erdogan, �??Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,�?? J. Opt. Soc. Am A 15, 464 (1998).
    [CrossRef]
  4. S. Peng and G. M. Morris, �??Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,�?? J. Opt. Soc. Am. A 12, 1087 (1995).
    [CrossRef]
  5. S. S. Wang and R. Magnusson, "Theory and Applications of Guided Mode Resonance Filters," Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  6. N. D. Sankey, D.F. Prelewitz and T. G. Brown, "All-optical switching in a nonlinear periodic waveguide structure," Appl. Phys. Lett. 60, 1427 (1992).
    [CrossRef]
  7. N. D. Sankey , D.F. Prelewitz and T. G. Brown, "Optical switching dynamics of the nonlinear Bragg reflector: comparison of theory and experiment," J. Appl. Phys. 73, 7111 (1993).
    [CrossRef]
  8. Amy E. Bieber and T. G. Brown, "Integral coupler-resonator for silicon-based switching and modulation," Appl. Phys. Lett. 71, 861 (1997).
    [CrossRef]
  9. Amy E. Bieber, D. F. Prelewitz, T. G. Brown, and R. Tiberio, "Optical Switching in a Metal-Semiconductor-Metal Waveguide Structure," Appl. Phys. Lett. 66, 3401 (1995).
    [CrossRef]
  10. R. A. Soref and B. R. Bennett, "Electro-optical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
    [CrossRef]
  11. R.A. Soref, et.al, "Optical Waveguiding in a Single-Crystal Layer of Germanium-Silicon Grown on Silicon," Opt. Lett. 15, 270 (1990).
    [CrossRef] [PubMed]
  12. T. G. Brown, R. P. Fabrizzio and S. M. Weiss, "Semiconductor periodic structures for out-of-plane optical switching and Bragg-soliton excitation," Opt. Express 3, 433 (1998). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-433">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-433</a>
    [CrossRef] [PubMed]
  13. T. P. Pearsall, H. Polatoglou, H. Presting, and Erich Kasper "Optical absorption spectroscopy of Si-Ge alloys and superlattices," Phys. Rev. B 54, 1545 (1996).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Amy E. Bieber, D. F. Prelewitz, T. G. Brown, and R. Tiberio, "Optical Switching in a Metal-Semiconductor-Metal Waveguide Structure," Appl. Phys. Lett. 66, 3401 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

N. D. Sankey, D.F. Prelewitz and T. G. Brown, "All-optical switching in a nonlinear periodic waveguide structure," Appl. Phys. Lett. 60, 1427 (1992).
[CrossRef]

Amy E. Bieber and T. G. Brown, "Integral coupler-resonator for silicon-based switching and modulation," Appl. Phys. Lett. 71, 861 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, "Electro-optical Effects in Silicon," IEEE J. Quantum Electron. QE-23, 123 (1987).
[CrossRef]

J. Appl. Phys. (1)

N. D. Sankey , D.F. Prelewitz and T. G. Brown, "Optical switching dynamics of the nonlinear Bragg reflector: comparison of theory and experiment," J. Appl. Phys. 73, 7111 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

S. Peng and G. M. Morris, �??Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,�?? J. Opt. Soc. Am. A 12, 1087 (1995).
[CrossRef]

J. Opt. Soc. Am A (1)

S. M. Norton, G. M. Morris, and T. Erdogan, �??Experimental investigation of resonant-grating filter lineshapes in comparison with theoretical models,�?? J. Opt. Soc. Am A 15, 464 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

T. P. Pearsall, H. Polatoglou, H. Presting, and Erich Kasper "Optical absorption spectroscopy of Si-Ge alloys and superlattices," Phys. Rev. B 54, 1545 (1996).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (57 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross sectional schematic of the SiGe/SOI structure. In the example shown, four silicon layers are separated by SiO2 cladding regions. A thin (160 nm) corrugated layer of SimGen is inserted into one c-Si layers and functions as the guiding layer. For the Cartesian axes shown, z denotes the direction of light propagation, y the orientation of the grating lines and the direction of incident polarization, and x is the direction of propagation of light within the guiding layer.

Fig. 2.
Fig. 2.

Blue trace: reflectance of a structure with a buried grating (715 nm period) comprised of a SimGen superlattice. The red trace shows the reflectance of a structure in which the grating is replaced with an equivalent uniform layer of refractive index 3.615.

Fig. 3.
Fig. 3.

The narrowband reflectance of a waveguide mode resonance near λ=1550 nm shows tunability with refractive index: (a) nSiGe=3.75; (b) nSiGe=3.76.

Fig. 4.
Fig. 4.

Waveguide mode resonance (a) for normally incident radiation and (b) detuned by 0.1 degree for cover illumination. Clicking on the figure will play a movie which shows the evolution of the resonance over an angular range from 0 to 0.15 degrees. [Media 1]

Fig. 5.
Fig. 5.

Waveguide mode resonance (a) with absorption in the SiGe layer (k=3×10-4) and (b) without absorption in the SiGe layer.

Fig. 6
Fig. 6

(a) Fraction of light absorbed and on/off contrast plotted against extinction k in the SiGe layer. (b) Comparison of contrast against extinction for substrate versus cover illumination.

Metrics