Abstract

Two-dimensional fluorescence and lasing images of a Rhodamine-6G doped water spray are observed with color photography. The lasing microdroplets are identified by their two reciprocal lasing spots. The microdroplet sizes are measured using the digitized images. The measured mean microdroplet diameter is 69.7 μm with a standard deviation of 23.1 μm. The measured microdroplet size distribution compares favorably with the normal Gaussian size distribution.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles

J.-G. Xie, R. G. Pinnick, T. E. Ruekgauer, and R. L. Armstrong
Opt. Lett. 18(5) 340-342 (1993)

Suppression of lasing by stimulated Raman scattering in microdroplets

Alfred S. Kwok and Richard K. Chang
Opt. Lett. 18(19) 1597-1599 (1993)

Lasing and stimulated Raman scattering in spherical liquid droplets: time, irradiance, and wavelength dependence

Hamid Latifi, Abhijit Biswas, Robert L. Armstrong, and Ronald G. Pinnick
Appl. Opt. 29(36) 5387-5392 (1990)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Mugele and H. D. Evans: “Droplet Size Distribution in Sprays,” Ind. Eng. Chem. 43, 1317–1324 (1951).
    [Crossref]
  2. M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).
  3. J. H. Koo and E. D. Hirleman, “Review of Principles of Optical Techniques for Particle Size Measurements,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3–32.
    [Crossref]
  4. G. A. Ruff and G. M. Faeth, “Nonintrusive Measurements of the Structure of Dense Sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263–296.
  5. D. J. Holve and S. A. Self, “Optical particle sizing for in-situ measurements: part I,” Appl. Opt. 18, 1632–1645 (1979); D. J. Holve and S. A. Self, “Optical particle sizing for in-situ measurements: part II,” Appl. Opt. 18, 1646–1652(1979).
    [Crossref] [PubMed]
  6. J. S. Batchelder and M. A. Taubenblatt, “Interferometric detection of forward scattered light from small particles,” Appl. Phys. Lett. 55, 215–217 (1989).
    [Crossref]
  7. M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
    [Crossref]
  8. W. D. Bachalo, “Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,” Appl. Opt. 19, 363–370 (1980).
    [Crossref] [PubMed]
  9. A. Mansour and N. Chigier, “Air-blast atomization of non-Newtonian liquids,” J. Non-Newtonian liquids 58, 161–194(1995).
    [Crossref]
  10. D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. 1. Experimental results,” Appl. Opt. 39, 5023–5030 (2000); G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. 2. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
    [Crossref]
  11. D. C. Herpfer and San-Mou Jeng, “Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,” AIAA J. 35, 127–132 (1997).
    [Crossref]
  12. B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
    [Crossref]
  13. R. A. Dobbins and G. S. Jizmagian, “Particle size measurements based on the use of mean scattering cross sections,” J. Opt. Soc. Am. 56, 1351–1354 (1966).
    [Crossref]
  14. R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).
  15. N. L. Swanson, B. D. Billard, and T. L. Gennaro, “Limits of optical transmission measurements with application to particle sizing techniques,” Appl. Opt. 38, 5887–5893 (1999).
    [Crossref]
  16. R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
    [Crossref]
  17. J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
    [Crossref]
  18. A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
    [Crossref]
  19. T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
    [Crossref]
  20. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
    [Crossref] [PubMed]
  21. N. Dombrowski and R. P. Fraser, “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. A 247, 101–130 (1954).
    [Crossref]
  22. H. Malot and J. B. Blaisot, “Droplet size distribution and sphericity measurements of low-density sprays through image analysis,” Part. Syst. Charact. 17, 146–158 (2000).
    [Crossref]
  23. T. Kamimoto, H. Kobayashi, and S. Matsuoka, “A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion,” SAE paper811004 (1981).
  24. B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).
  25. C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
    [Crossref]
  26. K. D. Ahlers and D. R. Alexander, “Microcomputer based digital image processing system developed to count and size laser-generated small particle images,” Opt. Eng. 24, 1060–1065 (1985).
  27. A. R. Glover, S. M. Skippon, and R. D. Boyle, “Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,” Appl. Opt. 34, 8409–8421 (1995).
    [Crossref] [PubMed]
  28. R. Albert and P. V. Farrell, “Droplet sizing using the Shifrin inversion,” J. Fluids Engineering 116, 357–362 (1994).
    [Crossref]
  29. K.R. Browne, I.M. Partridge, and G. Greeves, “Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine,” SAE paper860223 (1986).
  30. N. Chigier, “Optical Imaging of Sprays,” Prog. Energy Combust. Sci. 17, 211–262 (1991).
    [Crossref]
  31. L. A. Melton and J.F. Verdieck, “Vapor/Liquid Visualization for Fuel Sprays,” Combust. Sci. and Tech. 42, 217–222 (1985).
    [Crossref]
  32. M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
    [Crossref]
  33. W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
    [Crossref]
  34. M. Golombok and D. B. Pye, “Droplet sizing in fuel injections by stimulated Raman scattering,” Opt. Lett. 15, 872–874 (1990).
    [Crossref] [PubMed]
  35. L. A. Melton, “Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor,” Appl. Opt. 22, 2224–2226 (1983).
    [Crossref] [PubMed]
  36. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
    [Crossref]
  37. C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297–308.
  38. A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
    [Crossref] [PubMed]
  39. Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).
  40. P. R. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, San Diego, 1993).
  41. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).
  42. J. Rarity and C. Weisbuch, Eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluver, Dordrecht, 1996).
    [Crossref]
  43. E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).
  44. P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119 – 122 (1973).
    [Crossref]
  45. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
    [Crossref] [PubMed]
  46. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
    [Crossref]
  47. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).
  48. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
    [Crossref]
  49. Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
    [Crossref] [PubMed]
  50. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
    [Crossref] [PubMed]
  51. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
    [Crossref]
  52. D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
    [Crossref]
  53. H. Yokoyama and K. Ujihara, Eds., Spontaneous emission and laser oscillation in microcavities (CRC Press, Boca Raton, 1995).
  54. M. S. Ünlü and S. Strite, “Resonant Cavity Enhanced Photonic Devices,” J. Appl. Phys. 78, 607 (1995).
    [Crossref]
  55. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
    [Crossref]
  56. R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149 (1994).
    [Crossref]
  57. E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
    [Crossref]
  58. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
    [Crossref]
  59. Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
    [Crossref] [PubMed]
  60. J.V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993 (1996).
    [Crossref]
  61. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
    [Crossref]
  62. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
    [Crossref] [PubMed]
  63. R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  64. P. W. Barber and R. K. Chang, Eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).
  65. A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [Crossref]
  66. R. K. Chang, “Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects,” in Advances in Laser Science-II, M. Lapp, W. C. Stwalley, and G. A. Kenny-Wallace, Eds. (American Institute of Physics, New York, 1987). pp. 509–515.
  67. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
    [Crossref]
  68. D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R.K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
    [Crossref] [PubMed]
  69. S. C. Ching, H. M. Lai, and K. Young, “Dielectric Microspheres as Optical Cavities: Thermal Spectrum and Density of States,” J. Opt. Soc. Am. B 4, 1995–2003 (1987).
    [Crossref]
  70. S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
    [Crossref] [PubMed]
  71. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  72. S. C. Hill and R. E. Benner, “Morphology-Dependent Resonances associated with Stimulated Processes in Microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
    [Crossref]
  73. J. -Z. Zhang, D. H. Leach, and R. K. Chang, “Photon Lifetime within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering,” Opt. Lett. 13, 270–272 (1988).
    [Crossref] [PubMed]
  74. P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, “Efficient Automated Algorithm for the Sizing of Dielectric Microspheres using the Resonance Spectrum,” J. Opt. Soc. Am. A 1, 1181–1186 (1984).
    [Crossref]
  75. H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
    [Crossref]
  76. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350–351.
  77. A. S. Kwok, C. F. Wood, and R. K. Chang, “Fluorescence Imaging of CO2 Laser-Heated Droplets,” Opt. Lett. 15, 664–666 (1990).
    [Crossref] [PubMed]
  78. R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics (Irwin, Illinois, 1987). pp. 1025–1032.
  79. J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers (McGraw-Hill, New York, 1970). pp. 478–480.

2001 (2)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[Crossref]

2000 (3)

1999 (2)

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

N. L. Swanson, B. D. Billard, and T. L. Gennaro, “Limits of optical transmission measurements with application to particle sizing techniques,” Appl. Opt. 38, 5887–5893 (1999).
[Crossref]

1998 (7)

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
[Crossref]

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).

M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
[Crossref]

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
[Crossref]

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

1997 (2)

C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
[Crossref]

D. C. Herpfer and San-Mou Jeng, “Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,” AIAA J. 35, 127–132 (1997).
[Crossref]

1996 (2)

G. A. Ruff and G. M. Faeth, “Nonintrusive Measurements of the Structure of Dense Sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263–296.

J.V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993 (1996).
[Crossref]

1995 (5)

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

M. S. Ünlü and S. Strite, “Resonant Cavity Enhanced Photonic Devices,” J. Appl. Phys. 78, 607 (1995).
[Crossref]

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

A. Mansour and N. Chigier, “Air-blast atomization of non-Newtonian liquids,” J. Non-Newtonian liquids 58, 161–194(1995).
[Crossref]

A. R. Glover, S. M. Skippon, and R. D. Boyle, “Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,” Appl. Opt. 34, 8409–8421 (1995).
[Crossref] [PubMed]

1994 (2)

R. Albert and P. V. Farrell, “Droplet sizing using the Shifrin inversion,” J. Fluids Engineering 116, 357–362 (1994).
[Crossref]

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149 (1994).
[Crossref]

1992 (5)

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[Crossref] [PubMed]

1991 (3)

N. Chigier, “Optical Imaging of Sprays,” Prog. Energy Combust. Sci. 17, 211–262 (1991).
[Crossref]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
[Crossref] [PubMed]

1990 (6)

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

A. S. Kwok, C. F. Wood, and R. K. Chang, “Fluorescence Imaging of CO2 Laser-Heated Droplets,” Opt. Lett. 15, 664–666 (1990).
[Crossref] [PubMed]

M. Golombok and D. B. Pye, “Droplet sizing in fuel injections by stimulated Raman scattering,” Opt. Lett. 15, 872–874 (1990).
[Crossref] [PubMed]

1989 (1)

J. S. Batchelder and M. A. Taubenblatt, “Interferometric detection of forward scattered light from small particles,” Appl. Phys. Lett. 55, 215–217 (1989).
[Crossref]

1988 (1)

1987 (3)

1986 (2)

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

S. C. Hill and R. E. Benner, “Morphology-Dependent Resonances associated with Stimulated Processes in Microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
[Crossref]

1985 (3)

L. A. Melton and J.F. Verdieck, “Vapor/Liquid Visualization for Fuel Sprays,” Combust. Sci. and Tech. 42, 217–222 (1985).
[Crossref]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

K. D. Ahlers and D. R. Alexander, “Microcomputer based digital image processing system developed to count and size laser-generated small particle images,” Opt. Eng. 24, 1060–1065 (1985).

1984 (2)

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, “Efficient Automated Algorithm for the Sizing of Dielectric Microspheres using the Resonance Spectrum,” J. Opt. Soc. Am. A 1, 1181–1186 (1984).
[Crossref]

1983 (1)

1980 (2)

W. D. Bachalo, “Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,” Appl. Opt. 19, 363–370 (1980).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

1979 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

1973 (1)

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119 – 122 (1973).
[Crossref]

1966 (1)

1963 (1)

R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
[Crossref]

1954 (1)

N. Dombrowski and R. P. Fraser, “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. A 247, 101–130 (1954).
[Crossref]

1951 (1)

R. A. Mugele and H. D. Evans: “Droplet Size Distribution in Sprays,” Ind. Eng. Chem. 43, 1317–1324 (1951).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Acker, W. P.

A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[Crossref] [PubMed]

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

Ahlers, K. D.

K. D. Ahlers and D. R. Alexander, “Microcomputer based digital image processing system developed to count and size laser-generated small particle images,” Opt. Eng. 24, 1060–1065 (1985).

Albert, R.

R. Albert and P. V. Farrell, “Droplet sizing using the Shifrin inversion,” J. Fluids Engineering 116, 357–362 (1994).
[Crossref]

Alexander, D. R.

K. D. Ahlers and D. R. Alexander, “Microcomputer based digital image processing system developed to count and size laser-generated small particle images,” Opt. Eng. 24, 1060–1065 (1985).

Anan, T.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

Arnold, F. H.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

Bachalo, W. D.

Barber, P. W.

D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R.K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Bartley, D.

Bartley, D. L.

Batchelder, J. S.

J. S. Batchelder and M. A. Taubenblatt, “Interferometric detection of forward scattered light from small particles,” Appl. Phys. Lett. 55, 215–217 (1989).
[Crossref]

Benincasa, D. S.

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

Benjamin, J.

J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers (McGraw-Hill, New York, 1970). pp. 478–480.

Benner, R. E.

Bi, W. G.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Billard, B. D.

Björk, G.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
[Crossref] [PubMed]

Blaisot, J. B.

H. Malot and J. B. Blaisot, “Droplet size distribution and sphericity measurements of low-density sprays through image analysis,” Part. Syst. Charact. 17, 146–158 (2000).
[Crossref]

Bourrianne, T.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Boyle, R. D.

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

Brenguier, J. L.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Brorson, S. D.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Browne, K.R.

K.R. Browne, I.M. Partridge, and G. Greeves, “Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine,” SAE paper860223 (1986).

Brueck, S. R. J.

J.V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993 (1996).
[Crossref]

Butler, M. C.

C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
[Crossref]

Campillo, A. J.

H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

Cao, H.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).

Carmichael, H.J.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Chang, R. K.

A. S. Kwok, C. F. Wood, and R. K. Chang, “Fluorescence Imaging of CO2 Laser-Heated Droplets,” Opt. Lett. 15, 664–666 (1990).
[Crossref] [PubMed]

J. -Z. Zhang, D. H. Leach, and R. K. Chang, “Photon Lifetime within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering,” Opt. Lett. 13, 270–272 (1988).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

R. K. Chang, “Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects,” in Advances in Laser Science-II, M. Lapp, W. C. Stwalley, and G. A. Kenny-Wallace, Eds. (American Institute of Physics, New York, 1987). pp. 509–515.

Chang, R.K.

A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[Crossref] [PubMed]

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R.K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[Crossref] [PubMed]

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Chigier, N.

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

A. Mansour and N. Chigier, “Air-blast atomization of non-Newtonian liquids,” J. Non-Newtonian liquids 58, 161–194(1995).
[Crossref]

N. Chigier, “Optical Imaging of Sprays,” Prog. Energy Combust. Sci. 17, 211–262 (1991).
[Crossref]

Ching, S. C.

Cho, A. Y.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

Chu, D. Y.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Coelho, A. D.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Conwell, P. R.

Corcoran, T. E.

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

Cornell, C.

J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers (McGraw-Hill, New York, 1970). pp. 478–480.

Crocco, L.

R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
[Crossref]

Davis, E. J.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350–351.

De Martini, F.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
[Crossref] [PubMed]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

DeBiase, D.

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

Derov, P.

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

Dobbins, R. A.

R. A. Dobbins and G. S. Jizmagian, “Particle size measurements based on the use of mean scattering cross sections,” J. Opt. Soc. Am. 56, 1351–1354 (1966).
[Crossref]

R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
[Crossref]

Dombrowski, N.

N. Dombrowski and R. P. Fraser, “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. A 247, 101–130 (1954).
[Crossref]

Dubey, R. K.

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).

Dyumaev, K. M.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

Evans, H. D.

R. A. Mugele and H. D. Evans: “Droplet Size Distribution in Sprays,” Ind. Eng. Chem. 43, 1317–1324 (1951).
[Crossref]

Eversole, J. D.

H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

Faeth, G. M.

G. A. Ruff and G. M. Faeth, “Nonintrusive Measurements of the Structure of Dense Sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263–296.

Farrell, P. V.

R. Albert and P. V. Farrell, “Droplet sizing using the Shifrin inversion,” J. Fluids Engineering 116, 357–362 (1994).
[Crossref]

Fisher, T. A.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
[Crossref]

Fraser, R. P.

N. Dombrowski and R. P. Fraser, “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. A 247, 101–130 (1954).
[Crossref]

Fu, Q.

Gauthier, J.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Gennaro, T. L.

Glassman, I.

R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
[Crossref]

Glover, A. R.

Golombok, M.

M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
[Crossref]

M. Golombok and D. B. Pye, “Droplet sizing in fuel injections by stimulated Raman scattering,” Opt. Lett. 15, 872–874 (1990).
[Crossref] [PubMed]

Greenaway, R. S.

Greenhalgh, D. A.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[Crossref]

Greeves, G.

K.R. Browne, I.M. Partridge, and G. Greeves, “Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine,” SAE paper860223 (1986).

Gromov, D. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Herpfer, D. C.

D. C. Herpfer and San-Mou Jeng, “Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,” AIAA J. 35, 127–132 (1997).
[Crossref]

Hill, S. C.

Hill, S.C.

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

Hirleman, E. D.

J. H. Koo and E. D. Hirleman, “Review of Principles of Optical Techniques for Particle Size Measurements,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3–32.
[Crossref]

Hirst, E.

Hitron, R.

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

Ho, S. T.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Holve, D. J.

Hsieh, W. -F.

Humphrey, W.

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

Igeta, K.

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

Imamoglu, A.

Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

Innocenti, G.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
[Crossref] [PubMed]

Ippen, E. P.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Isaac, G. A.

A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
[Crossref]

Isbert, J.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

Jacobowitz, G. R.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
[Crossref] [PubMed]

Jacobson, J.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

Jeng, San-Mou

D. C. Herpfer and San-Mou Jeng, “Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,” AIAA J. 35, 127–132 (1997).
[Crossref]

Jermy, M. C.

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[Crossref]

Jizmagian, G. S.

Kamimoto, T.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297–308.

T. Kamimoto, H. Kobayashi, and S. Matsuoka, “A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion,” SAE paper811004 (1981).

Kaye, P. H.

Knight, P. L.

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119 – 122 (1973).
[Crossref]

Kobayashi, H.

T. Kamimoto, H. Kobayashi, and S. Matsuoka, “A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion,” SAE paper811004 (1981).

Koo, J. H.

J. H. Koo and E. D. Hirleman, “Review of Principles of Optical Techniques for Particle Size Measurements,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3–32.
[Crossref]

Korolev, A. V.

A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
[Crossref]

Kosaka, H.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297–308.

Kwok, A. S.

Lai, H. M.

Leach, D. H.

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

Lin, H. -B.

H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Machida, S.

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
[Crossref] [PubMed]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

Malot, H.

H. Malot and J. B. Blaisot, “Droplet size distribution and sphericity measurements of low-density sprays through image analysis,” Part. Syst. Charact. 17, 146–158 (2000).
[Crossref]

Maly, R.R.

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).

Manenkov, A. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Mansour, A.

A. Mansour and N. Chigier, “Air-blast atomization of non-Newtonian liquids,” J. Non-Newtonian liquids 58, 161–194(1995).
[Crossref]

Martin, S. J.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

Maslyukov, A. P.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Mataloni, P.

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
[Crossref] [PubMed]

Matsuoka, S.

T. Kamimoto, H. Kobayashi, and S. Matsuoka, “A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion,” SAE paper811004 (1981).

Matyushin, G. A.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Mayer, G.W.

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

McQuay, M. Q.

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).

Melton, L. A.

L. A. Melton and J.F. Verdieck, “Vapor/Liquid Visualization for Fuel Sprays,” Combust. Sci. and Tech. 42, 217–222 (1985).
[Crossref]

L. A. Melton, “Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor,” Appl. Opt. 22, 2224–2226 (1983).
[Crossref] [PubMed]

Miller, P. C. H

C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
[Crossref]

Milloni, P. W.

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119 – 122 (1973).
[Crossref]

Morin, S. E.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Morin, V.

M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
[Crossref]

Mossberg, T.W.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Mounaim-Rousselle, C.

M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
[Crossref]

Mugele, R. A.

R. A. Mugele and H. D. Evans: “Droplet Size Distribution in Sprays,” Ind. Eng. Chem. 43, 1317–1324 (1951).
[Crossref]

Nambu, Y.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

Nazeer, W. A.

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).

Nechitailo, V. S.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Nishi, K.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Partridge, I.M.

K.R. Browne, I.M. Partridge, and G. Greeves, “Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine,” SAE paper860223 (1986).

Pate, M. A.

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

Patterson, J. H.

R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics (Irwin, Illinois, 1987). pp. 1025–1032.

Pau, S.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Peytavi, R.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Pfaffenberger, R. C.

R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics (Irwin, Illinois, 1987). pp. 1025–1032.

Prokhorov, A. M.

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B,  2, 1208–1031 (1985).
[Crossref]

Purcell, E. M.

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Pye, D. B.

Qian, S.-X.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Quake, S. R.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

Reck, B.

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).

Roberts, R. W.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

Ruff, G. A.

G. A. Ruff and G. M. Faeth, “Nonintrusive Measurements of the Structure of Dense Sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263–296.

Rushforth, C. K.

Sandusky, J.V.

J.V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993 (1996).
[Crossref]

Schaudt, R.A.

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).

Schubert, E. F.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

Schweiger, G.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350–351.

Secker, D. R.

Self, S. A.

Serpengüzel, A.

A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[Crossref] [PubMed]

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

Sick, V.

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[Crossref]

Simmons, H. C.

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

Skippon, S. M.

Skolnick, M. S.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
[Crossref]

Slusher, R. E.

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149 (1994).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

Snow, J.B.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Stojkovic, B. D.

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[Crossref]

Strapp, J. W.

A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
[Crossref]

Strite, S.

M. S. Ünlü and S. Strite, “Resonant Cavity Enhanced Photonic Devices,” J. Appl. Phys. 78, 607 (1995).
[Crossref]

Sun, W.

Suzuki, M.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

Swanson, N. L.

Swindal, J.C.

Tassone, F.

Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).

Taubenblatt, M. A.

J. S. Batchelder and M. A. Taubenblatt, “Interferometric detection of forward scattered light from small particles,” Appl. Phys. Lett. 55, 215–217 (1989).
[Crossref]

Thorsen, T.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

Tiberio, R. C.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Trevarin, D.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Tu, C. W.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Tu, l. W.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

Tuck, C. R.

C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
[Crossref]

Tzeng, H.-M.

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant Cavity Enhanced Photonic Devices,” J. Appl. Phys. 78, 607 (1995).
[Crossref]

Verdieck, J.F.

L. A. Melton and J.F. Verdieck, “Vapor/Liquid Visualization for Fuel Sprays,” Combust. Sci. and Tech. 42, 217–222 (1985).
[Crossref]

Videen, G.

Wang, Y.-H.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149 (1994).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

Weiss, B. A.

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

Weschler, P.

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

Whittaker, D. M.

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
[Crossref]

Wood, C. F.

Wu, Q.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Wu, S. L.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Yamada, H.

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Yamamoto, Y.

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
[Crossref] [PubMed]

Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).

Yeh, C.-N.

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297–308.

Yokoyama, H.

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Young, K.

Zhang, J. P.

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

Zhang, J. -Z.

Zhu, Y.

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Zydzik, G. J.

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

44 (1)

G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Modification of spontaneous emission rate in planar dielectric microstructures, Phys. Rev. A44,  669 – 681 (1991).

AIAA J. (2)

D. C. Herpfer and San-Mou Jeng, “Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,” AIAA J. 35, 127–132 (1997).
[Crossref]

R. A. Dobbins, L. Crocco, and I. Glassman, “Measurement of mean particle sizes of sprays from diffractively scattered light,” AIAA J. 1, 1882–1886 (1963).
[Crossref]

Appl. Opt. (8)

N. L. Swanson, B. D. Billard, and T. L. Gennaro, “Limits of optical transmission measurements with application to particle sizing techniques,” Appl. Opt. 38, 5887–5893 (1999).
[Crossref]

D. J. Holve and S. A. Self, “Optical particle sizing for in-situ measurements: part I,” Appl. Opt. 18, 1632–1645 (1979); D. J. Holve and S. A. Self, “Optical particle sizing for in-situ measurements: part II,” Appl. Opt. 18, 1646–1652(1979).
[Crossref] [PubMed]

W. D. Bachalo, “Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,” Appl. Opt. 19, 363–370 (1980).
[Crossref] [PubMed]

D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, “Light scattering from deformed droplets and droplets with inclusions. 1. Experimental results,” Appl. Opt. 39, 5023–5030 (2000); G. Videen, W. Sun, Q. Fu, D. R. Secker, R. S. Greenaway, P. H. Kaye, E. Hirst, and D. Bartley, “Light scattering from deformed droplets and droplets with inclusions. 2. Theoretical treatment,” Appl. Opt. 39, 5031–5039 (2000).
[Crossref]

A. R. Glover, S. M. Skippon, and R. D. Boyle, “Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,” Appl. Opt. 34, 8409–8421 (1995).
[Crossref] [PubMed]

L. A. Melton, “Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor,” Appl. Opt. 22, 2224–2226 (1983).
[Crossref] [PubMed]

A. Serpengüzel, J.C. Swindal, R.K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
[Crossref] [PubMed]

D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R.K. Chang, “Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers,” Appl. Opt. 26, 1348–1356 (1987).
[Crossref] [PubMed]

Appl. Phys. B (3)

M. C. Jermy and D. A. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[Crossref]

W. P. Acker, A. Serpengüzel, R.K. Chang, and S.C. Hill, “Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination,” Appl. Phys. B 51, 9–16 (1990).
[Crossref]

B. D. Stojkovic and V. Sick, “Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques,” Appl. Phys. B 73, 75–83 (2001).
[Crossref]

Appl. Phys. Lett. (5)

J. S. Batchelder and M. A. Taubenblatt, “Interferometric detection of forward scattered light from small particles,” Appl. Phys. Lett. 55, 215–217 (1989).
[Crossref]

E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, “Resonant Cavity Light Emitting Diode,” Appl. Phys. Lett. 60, 921 (1992).
[Crossref]

J.V. Sandusky and S. R. J. Brueck, “Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure,” Appl. Phys. Lett. 69, 3993 (1996).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering Gallery Mode Microdisk Lasers,” Appl. Phys. Lett. 60, 289 (1992).
[Crossref]

H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities,” Appl. Phys. Lett. 57, 2814 – 2816 (1990).
[Crossref]

Combust. Sci. and Tech. (1)

L. A. Melton and J.F. Verdieck, “Vapor/Liquid Visualization for Fuel Sprays,” Combust. Sci. and Tech. 42, 217–222 (1985).
[Crossref]

Fuel (1)

M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, “An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,” Fuel 77, 425–435 (1998).

IEEE J. Sel. Top. Quantum Electron. (2)

D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, “Pixelated multicolor microcavity displays,” IEEE J. Sel. Top. Quantum Electron. 4, 113 (1998).
[Crossref]

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends,” IEEE J. Sel. Top. Quantum Electron. 34, 1612 (1998); H. Benisty, H. De Neve, and C. Weisbuch, “Impact of Planar Microcavity Effects on Light Extraction - Part II: Selected Exact Simulations and Role of Photon Recycling,” IEEE J. Sel. Top. Quantum Electron. 34, 1632 (1998).
[Crossref]

Ind. Eng. Chem. (1)

R. A. Mugele and H. D. Evans: “Droplet Size Distribution in Sprays,” Ind. Eng. Chem. 43, 1317–1324 (1951).
[Crossref]

J. Aerosol Sci. (1)

T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, “Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,” J. Aerosol Sci. 31, 35–50 (1999).
[Crossref]

J. Appl. Phys. (1)

M. S. Ünlü and S. Strite, “Resonant Cavity Enhanced Photonic Devices,” J. Appl. Phys. 78, 607 (1995).
[Crossref]

J. Atmospheric Oceanic Tech. (1)

A. V. Korolev, J. W. Strapp, and G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmospheric Oceanic Tech. 15, 708–720 (1998).
[Crossref]

J. Atmospheric Oceanic Technol. (1)

J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, “Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe),” J. Atmospheric Oceanic Technol. 15, 1077–1090 (1998).
[Crossref]

J. Crop Protection (1)

C. R. Tuck, M. C. Butler, and P. C. H Miller, “Techniques for measurement of droplet size and velocity distributions in agricultural sprays,” J. Crop Protection 7, 619–628 (1997).
[Crossref]

J. Fluids Engineering (1)

R. Albert and P. V. Farrell, “Droplet sizing using the Shifrin inversion,” J. Fluids Engineering 116, 357–362 (1994).
[Crossref]

J. Non-Newtonian liquids (1)

A. Mansour and N. Chigier, “Air-blast atomization of non-Newtonian liquids,” J. Non-Newtonian liquids 58, 161–194(1995).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (1)

M. Golombok, V. Morin, and C. Mounaim-Rousselle, “Droplet diameter and the interference fringes between reflected and refracted light,” J. Phys. D: Appl. Phys. 31, 59–62 (1998).
[Crossref]

Opt. Commun. (2)

P. W. Milloni and P. L. Knight, “Spontaneous emission between mirrors,” Opt. Commun. 9, 119 – 122 (1973).
[Crossref]

H. -B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets,” Opt. Commun. 77, 407–410 (1990).
[Crossref]

Opt. Eng. (2)

K. D. Ahlers and D. R. Alexander, “Microcomputer based digital image processing system developed to count and size laser-generated small particle images,” Opt. Eng. 24, 1060–1065 (1985).

B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, “Fluid particle sizing using a fully automated optical imaging system,” Opt. Eng. 23, 561–566 (1984).

Opt. Lett. (3)

Opt. Quantum Electron. (1)

H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, “Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities,” Opt. Quantum Electron.,  24, S245 (1992).
[Crossref]

Part. Syst. Charact. (1)

H. Malot and J. B. Blaisot, “Droplet size distribution and sphericity measurements of low-density sprays through image analysis,” Part. Syst. Charact. 17, 146–158 (2000).
[Crossref]

Phil. Trans. A (1)

N. Dombrowski and R. P. Fraser, “A Photographic Investigation into the Disintegration of Liquid Sheets,” Phil. Trans. A 247, 101–130 (1954).
[Crossref]

Phys Rev. Lett. (1)

Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations,” Phys Rev. Lett. 64, 2499 – 2502 (1990).
[Crossref] [PubMed]

Phys. Rev A (1)

Y. Yamamoto, S. Machida, and G. Björk, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev A 44, 657 (1991).
[Crossref] [PubMed]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous Emission Probabilities at Radio Frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, “Microcavity exciton-polariton splitting in the linear regime,” Phys. Rev. B 51, 14437 – 14447 (1995).
[Crossref]

Phys. Rev. Lett. (6)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 – 3317 (1992).
[Crossref] [PubMed]

F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, “Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity,” Phys. Rev. Lett. 59, 2955 – 2958 (1987).
[Crossref] [PubMed]

J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, “Photonic Wire Laser,” Phys. Rev. Lett. 75, 2678 (1995).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[Crossref]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,” Phys. Rev. Lett. 86, 4163–4166 (2001).
[Crossref] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of Structure Resonances in the Fluorescence Spectra from Microspheres,” Phys. Rev. Lett. 44, 475–478 (1980).
[Crossref]

Prog. Energy Combust. Sci. (1)

N. Chigier, “Optical Imaging of Sprays,” Prog. Energy Combust. Sci. 17, 211–262 (1991).
[Crossref]

Science (1)

S.-X. Qian, J.B. Snow, H.-M. Tzeng, and R.K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231, 486–488 (1986).
[Crossref] [PubMed]

Semiconductor Science Technol. (1)

M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong Coupling Phenomena in Quantum Microcavity Structures,” Semiconductor Science Technol. 13, 645 – 669 (1998).
[Crossref]

Solid State Commun. (1)

R. E. Slusher and C. Weisbuch, “Optical microcavities in condensed matter systems,” Solid State Commun. 92, 149 (1994).
[Crossref]

Other (18)

R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

P. W. Barber and R. K. Chang, Eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

R. K. Chang, “Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects,” in Advances in Laser Science-II, M. Lapp, W. C. Stwalley, and G. A. Kenny-Wallace, Eds. (American Institute of Physics, New York, 1987). pp. 509–515.

H. Yokoyama and K. Ujihara, Eds., Spontaneous emission and laser oscillation in microcavities (CRC Press, Boca Raton, 1995).

Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).

P. R. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, San Diego, 1993).

Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).

J. Rarity and C. Weisbuch, Eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluver, Dordrecht, 1996).
[Crossref]

K.R. Browne, I.M. Partridge, and G. Greeves, “Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine,” SAE paper860223 (1986).

C.-N. Yeh, H. Kosaka, and T. Kamimoto, “Measurement of drop sizes in unsteady dense sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297–308.

T. Kamimoto, H. Kobayashi, and S. Matsuoka, “A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion,” SAE paper811004 (1981).

J. H. Koo and E. D. Hirleman, “Review of Principles of Optical Techniques for Particle Size Measurements,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3–32.
[Crossref]

G. A. Ruff and G. M. Faeth, “Nonintrusive Measurements of the Structure of Dense Sprays,” in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263–296.

R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, “Optical Diagnostic for Diesel-Sprays with μs-Time Resolution,” SAE paper910727, (1991).

R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics (Irwin, Illinois, 1987). pp. 1025–1032.

J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers (McGraw-Hill, New York, 1970). pp. 478–480.

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350–351.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The schematic of the equatorial plane of the microdroplet showing the focusing effect of the microdroplet with high intensity pump regions and the counter-propagating morphology dependent resonances. The pump input laser is shown in green, the fluorescing microdroplet is shown in yellow, and the counterpropagating and lasing MDR’s are shown in orange-red. The two high intensity spots in the illuminated and shadow side are indicated by green ellipses.

Fig. 2.
Fig. 2.

The experimental setup used to image the spray. A laser sheet illuminates the spray emerging form the hollow-cone nozzle. The spray is imaged through a filter onto the camera.

Fig. 3.
Fig. 3.

The experimentally obtained images of the single lasing microdroplets in the (a-c) four times and (b-d) two times magnified images of the Rhodamine-6G doped water spray. Notice the two reciprocal lasing spots corresponding to the two counter-propagating lasing beams. In Fig. 3 (f) there are two sets of perpendicular lasing modes.

Fig. 4.
Fig. 4.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 5.
Fig. 5.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 6.
Fig. 6.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 7.
Fig. 7.

Experimentally obtained (a) original image and (b) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray with two times magnification. The white box in (b) indicates the enlarged region shown in (c) and (d). Magnified region of the experimentally obtained (c) original image and (d) analyzed image of the lasing and fluorescing Rhodamine-6G doped water spray. A microdroplet is defined by a pair of reciprocal lasing spots.

Fig. 8.
Fig. 8.

The histogram plot of the number of microdroplets and the respective normal Gaussian fit as a function of the microdroplet diameter.

Fig. 9.
Fig. 9.

The plot of the cumulative number of microdroplets and the respective normal Gaussian CDF as a function of the microdroplet diameter.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p ( x ) = 1 σ 2 π exp ( 1 2 ( d μ σ ) 2 ) .
F ( x ) = 1 σ 2 π + exp ( 1 2 ( d μ σ ) 2 ) dx .

Metrics