Abstract

A novel coupled-quantum-well system is described in which the in-plane, anisotropic strain in successive well layers alternates between compression and tension. A polarization anisotropy in the interband optical matrix elements that arises due to anisotropic strain is reversed between the compressive and tensile cases. Hence, transitions associated with the different well layers have reversed polarization anisotropies. The structure of interest has great flexibility in the energies of successive interband transitions, and in the size of the anisotropy of the various transitions. The structure can be used in describing quantum-well properties, in optical multiplexing, and in devices such as modulators.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Man-Fang Huang, Elsa Garmire, Afshin Partovi and Minghwei Hong, " Room temperature optical absorption characteristics of GaAs/AlGaAs multiple quantum well structures under external anisotropic strain," Appl. Phys. Lett. 66, 736-738 (1995).
    [CrossRef]
  2. Man-Fang Huang, Elsa Garmire and Yen-Kuang Kuo, "Absorption anisotropy for lattice matched GaAs/AlGaAs multiple quantum well structures under external anisotropic biaxial strain: compression along[110] and tension along [-110]," Jpn. J. Appl. Phys. 39, 1776-1781 (2000).
    [CrossRef]
  3. H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta, Y. Lu, and H. C. Kuo, "Optical anisotropy in GaAs/AlxGa1-xAs multiple quantum wells under thermally induced uniaxial strain," Phys. Rev. B 47, 13933-13936 (1993).
  4. H. Shen, M. Wraback, J. Pamulapati, M. Dutta, P. G. Newman, A. Ballato, and Y. Lu, "Normal incidence high contrast multiple quantum well light modulator based on polarization rotation," Appl. Phys. Lett. 62, 2908-2910 (1993).
    [CrossRef]
  5. M. Wraback, H. Shen, J. Pamulapati, M. Dutta, P. G. Newman, M. Taysing-Lara, Y. Lu, "Femtosecond studies of excitonic optical non-linearities in GaAs/ AlxGa1-xAs multiple quantum wells under in-plane uniaxial strain," Surf. Sci. 305, 238-242 (1994).
    [CrossRef]
  6. D. Burak, J. V. Moloney and R. Binder, "Macroscopic versus microscopic description of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," IEEE J. of Quantum. Electron. 36, 956-970 (2000).
    [CrossRef]
  7. M. Wraback and H. Shen, "A femtosecond, polarization-sensitive optically addressed modulator based on virtual exciton effects in an anisotropically strained multiple quantum well," Appl. Phys. Lett. 76, 1288-1290 (2000).
    [CrossRef]
  8. J. Pamulapati, H. Shen, M. Wraback, M. Taysing-Lara, M. Dutta, H. C. Kuo and Y. Lu, "Normal Incidence GaAs/AlGaAs multiple-quantum-well polarization modulator using an induced uniaxial strain," IEEE Trans. Elec. Devices 40, 2144-2145 (1993).
    [CrossRef]
  9. Mark L. Biermann andW. S. Rabinovich, �??In-plane anisotropy in GaxIn1-xAs/ AlyIn1-yAs quantum wells under tensile, in-plane strain,�?? unpublished.
  10. Bernard Gil, Pierre Lefebvre, Philippe Bonnel and Henry Mathieu, Christiane Deparis, Jean Massies, Gerard Neu and Yong Chen, "Uniaxial-stress investigation of asymmetrical GaAs-(Ga,Al)As double quantum wells," Phys. Rev. B 47, 1954-1960, (1993).
    [CrossRef]
  11. P. Lefebvre, P. Bonnel, B. Gil and H. Mathieu, "Resonant tunneling via stress-induced valence-band mixings in GaAs-(Ga,Al)As asymmetrical double quantum wells," Phys. Rev. B 44, 5635-5647, (1991).
    [CrossRef]
  12. J.W. Tomm, R. Muller, A. Barwolff, T. Elseasser, A. Gerhardt, J. Donecker, D. Lorenzen, F. X. Daiminger, S. Weiss, M. Hutter, E. Kaulfersch and H. Reichl, "Spectroscopic measurement of packaginginduced strains in quantum-well laser diodes," J. of Apl. Phys. 86, 1196-1201 (1999).
    [CrossRef]
  13. J. W. Tomm, R. Muller, A. Barwolff, T. Elseasser, D. Lorenzen, F. X. Daiminger, A. Gerhardt and J. Donecker, "Direct spectroscopic measurement of mounting-induced strain in high-power optoelectronic devices," Appl. Phys. Lett. 73, 3908-3910 (1998).
    [CrossRef]
  14. G. Fierling, X. Letartre, P. Viktorovitch, J. P. Lainé, and C. Priester, "Piezoelectrically induced electronic confinement obtained by three-dimensional elastic relaxation in III-V semiconducting overhanging beams," Appl. Phys. Lett. 74, 1990-1992 (1999).
    [CrossRef]
  15. W. S. Rabinovich, et. al., �??Anisotropic strain in quantum wells via micromachining,�?? unpublished.
  16. G. Rau, A. R. Glanfield, P. C. Klipstein, N. F. Johnson, and G. W. Smith, "Optical properties of GaAs/Al1-xGaxAs quantum wells subjected to large in-plane uniaxial stress," Phys. Rev. B 60, 1900-1914 (1999).
    [CrossRef]
  17. C. Mailhiot and D. L. Smith, "k. p theory of semiconductor superlattice electronic structure. II. Application to Ga1-xInxAs-Al1-yInyAs [100] superlattices," Phys. Rev. B 33, 8360-8372 (1986).
    [CrossRef]
  18. D. L. Smith and C. Mailhiot, ""k. p theory of semiconductor superlattice electronic structure. I . Formal results," Phys. Rev. B 33, 8345-8359 (1986).
    [CrossRef]
  19. C. Mailhiot and D. L. Smith, "Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices," Phys. Rev. B 35, 1242-1259 (1987).
    [CrossRef]
  20. Mark L. Biermann and C. R. Stroud, Jr., "Behavior of zone-center, subband energies in narrow, strongly coupled quantum wells," Appl. Phys. Lett. 58, 505-507 (1991).
    [CrossRef]
  21. P. O. Löwdin, "A note on quantum-mechanical perturbation theory," J. Chem. Phys. 19, 1396-1401 (1951).
    [CrossRef]
  22. C. Mailhiot and D. L. Smith, "Effects of compressive uniaxial stress on the electronic structure of GaAs-Ga1-xAlxAs quantum wells," Phys. Rev. B 36, 2942-2945 (1987).
    [CrossRef]

Appl. Phys. Lett. (6)

Man-Fang Huang, Elsa Garmire, Afshin Partovi and Minghwei Hong, " Room temperature optical absorption characteristics of GaAs/AlGaAs multiple quantum well structures under external anisotropic strain," Appl. Phys. Lett. 66, 736-738 (1995).
[CrossRef]

H. Shen, M. Wraback, J. Pamulapati, M. Dutta, P. G. Newman, A. Ballato, and Y. Lu, "Normal incidence high contrast multiple quantum well light modulator based on polarization rotation," Appl. Phys. Lett. 62, 2908-2910 (1993).
[CrossRef]

M. Wraback and H. Shen, "A femtosecond, polarization-sensitive optically addressed modulator based on virtual exciton effects in an anisotropically strained multiple quantum well," Appl. Phys. Lett. 76, 1288-1290 (2000).
[CrossRef]

J. W. Tomm, R. Muller, A. Barwolff, T. Elseasser, D. Lorenzen, F. X. Daiminger, A. Gerhardt and J. Donecker, "Direct spectroscopic measurement of mounting-induced strain in high-power optoelectronic devices," Appl. Phys. Lett. 73, 3908-3910 (1998).
[CrossRef]

G. Fierling, X. Letartre, P. Viktorovitch, J. P. Lainé, and C. Priester, "Piezoelectrically induced electronic confinement obtained by three-dimensional elastic relaxation in III-V semiconducting overhanging beams," Appl. Phys. Lett. 74, 1990-1992 (1999).
[CrossRef]

Mark L. Biermann and C. R. Stroud, Jr., "Behavior of zone-center, subband energies in narrow, strongly coupled quantum wells," Appl. Phys. Lett. 58, 505-507 (1991).
[CrossRef]

IEEE J. of Quantum. Electron. (1)

D. Burak, J. V. Moloney and R. Binder, "Macroscopic versus microscopic description of polarization properties of optically anisotropic vertical-cavity surface-emitting lasers," IEEE J. of Quantum. Electron. 36, 956-970 (2000).
[CrossRef]

IEEE Trans. Elec. Devices (1)

J. Pamulapati, H. Shen, M. Wraback, M. Taysing-Lara, M. Dutta, H. C. Kuo and Y. Lu, "Normal Incidence GaAs/AlGaAs multiple-quantum-well polarization modulator using an induced uniaxial strain," IEEE Trans. Elec. Devices 40, 2144-2145 (1993).
[CrossRef]

J. Chem. Phys. (1)

P. O. Löwdin, "A note on quantum-mechanical perturbation theory," J. Chem. Phys. 19, 1396-1401 (1951).
[CrossRef]

J. of Apl. Phys. (1)

J.W. Tomm, R. Muller, A. Barwolff, T. Elseasser, A. Gerhardt, J. Donecker, D. Lorenzen, F. X. Daiminger, S. Weiss, M. Hutter, E. Kaulfersch and H. Reichl, "Spectroscopic measurement of packaginginduced strains in quantum-well laser diodes," J. of Apl. Phys. 86, 1196-1201 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Man-Fang Huang, Elsa Garmire and Yen-Kuang Kuo, "Absorption anisotropy for lattice matched GaAs/AlGaAs multiple quantum well structures under external anisotropic biaxial strain: compression along[110] and tension along [-110]," Jpn. J. Appl. Phys. 39, 1776-1781 (2000).
[CrossRef]

Phys. Rev. B (8)

H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta, Y. Lu, and H. C. Kuo, "Optical anisotropy in GaAs/AlxGa1-xAs multiple quantum wells under thermally induced uniaxial strain," Phys. Rev. B 47, 13933-13936 (1993).

Bernard Gil, Pierre Lefebvre, Philippe Bonnel and Henry Mathieu, Christiane Deparis, Jean Massies, Gerard Neu and Yong Chen, "Uniaxial-stress investigation of asymmetrical GaAs-(Ga,Al)As double quantum wells," Phys. Rev. B 47, 1954-1960, (1993).
[CrossRef]

P. Lefebvre, P. Bonnel, B. Gil and H. Mathieu, "Resonant tunneling via stress-induced valence-band mixings in GaAs-(Ga,Al)As asymmetrical double quantum wells," Phys. Rev. B 44, 5635-5647, (1991).
[CrossRef]

G. Rau, A. R. Glanfield, P. C. Klipstein, N. F. Johnson, and G. W. Smith, "Optical properties of GaAs/Al1-xGaxAs quantum wells subjected to large in-plane uniaxial stress," Phys. Rev. B 60, 1900-1914 (1999).
[CrossRef]

C. Mailhiot and D. L. Smith, "k. p theory of semiconductor superlattice electronic structure. II. Application to Ga1-xInxAs-Al1-yInyAs [100] superlattices," Phys. Rev. B 33, 8360-8372 (1986).
[CrossRef]

D. L. Smith and C. Mailhiot, ""k. p theory of semiconductor superlattice electronic structure. I . Formal results," Phys. Rev. B 33, 8345-8359 (1986).
[CrossRef]

C. Mailhiot and D. L. Smith, "Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices," Phys. Rev. B 35, 1242-1259 (1987).
[CrossRef]

C. Mailhiot and D. L. Smith, "Effects of compressive uniaxial stress on the electronic structure of GaAs-Ga1-xAlxAs quantum wells," Phys. Rev. B 36, 2942-2945 (1987).
[CrossRef]

Surf. Sci. (1)

M. Wraback, H. Shen, J. Pamulapati, M. Dutta, P. G. Newman, M. Taysing-Lara, Y. Lu, "Femtosecond studies of excitonic optical non-linearities in GaAs/ AlxGa1-xAs multiple quantum wells under in-plane uniaxial strain," Surf. Sci. 305, 238-242 (1994).
[CrossRef]

Other (2)

Mark L. Biermann andW. S. Rabinovich, �??In-plane anisotropy in GaxIn1-xAs/ AlyIn1-yAs quantum wells under tensile, in-plane strain,�?? unpublished.

W. S. Rabinovich, et. al., �??Anisotropic strain in quantum wells via micromachining,�?? unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Interband transition energies as a function of the width of the well under tension. Transition energies do not include exciton binding energies. The width of the compressive well is 26 angstroms. HH1-C1 – circle; HH2-C1 – triangle; LH1-C1 – square; HH1-C2 – open circle; HH2-C2 – open triangle.

Fig. 2
Fig. 2

Squared, interband, optical matrix elements for two polarization directions for HH1-C1 and HH2-C1 transitions as a function of the width of the well under tension. The width of the compressive well is 26 angstroms. HH1-C1 transition: Light is polarized along the x-axis – circles; y-axis – triangles. HH2-C1 transition: Light is polarized along the x-axis – open circles; y-axis – open triangles.

Fig. 3
Fig. 3

Squared, interband, optical matrix elements for two polarization directions for HH1-C2 and HH2-C2 transitions as a function of the width of the well under tension. The width of the compressive well is 26 angstroms. HH1-C2 transition: Light is polarized along the x-axis – circles; y-axis – triangles. HH2-C2 transition: Light is polarized along the x-axis – open circles; y-axis – open triangles.

Fig. 4
Fig. 4

Squared, interband, optical matrix elements for three polarization directions for the LH1-C1 transition as a function of the width of the well under tension. The width of the compressive well is 26 angstroms. Light is polarized along the x-axis – circles; y-axis – triangles; z-axis – squares.

Metrics