Abstract

We report on the influence of the choice of the pump wavelength relative to the zero-dispersion wavelength for continuum generation in microstructured fibers. Different nonlinear mechanisms are observed depending on whether the pump is located in the normal or anomalous dispersion region. Raman scattering and the wavelength dependence of the group delay of the fiber are found to play an important role in the process. We give an experimental and numerical analysis of the observed phenomena and find a good agreement between the two.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  3. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, �??More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,�?? Electron. Lett. 36, 2089-2090 (2000).
    [CrossRef]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
    [CrossRef]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 13, 961-963 (1997).
    [CrossRef]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz., �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  7. S. Coen, A. H. Lun Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,�?? Opt. Lett. 26, 1356-1358 (2001).
    [CrossRef]
  8. P. A. Champert, S. V. Popov, and J. R. Taylor, �??Generation of multiwatt, broadband continua in holey fibers,�?? Opt. Lett. 27, 122-124 (2002).
    [CrossRef]
  9. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher�??order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  10. J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  12. B. R. Washburn, S. E. Ralph, and R. S. Windeler, �??Ultrashort pulse propagation in air-silica microstructure fiber,�?? Opt. Express 10, 575-580 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>.
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).
  14. K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  15. N. Akhemediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef]
  16. Y. Kodama and A. Hasegawa, �??Nonlinear pulse propagation in monomode dielectric guide,�?? IEEE J. Quantum Electron. 23, 510-524 (1987).
    [CrossRef]
  17. F. M. Mitschke and L. F. Mollenauer, �??Discovery of the soliton self-frequency shift,�?? Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  18. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. 23, 1938-1946 (1987).
    [CrossRef]
  19. J. P. Gordon, �??Theory of the soliton self-frequency shift,�?? Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  20. Data kindly provided by R. H. Stolen.
  21. N. Nishizawa and T. Goto, �??Experimental analysis of ultrashort pulse propagation in optical fibers around zero-dispersion region using cross-correlation frequency resolved optical gating,�?? Opt. Express 8, 328-334 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-6-328</a>
    [CrossRef]
  22. V. P. Yanovsky and F. W. Wise, �??Nonlinear propagation of high-power, sub-100-fs pulses near the zerodispersion wavelength of an optical fiber,�?? Opt. Lett. 19, 1547-1549 (1994).
    [CrossRef] [PubMed]
  23. J. E. Rothenberg and D. Grischkowsky, �??Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers,�?? Phys. Rev. Lett. 62, 531-534 (1989).
    [CrossRef] [PubMed]

Electron. Lett. (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K-I. Sato, �??More than 1000 channels optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,�?? Electron. Lett. 36, 2089-2090 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Y. Kodama and A. Hasegawa, �??Nonlinear pulse propagation in monomode dielectric guide,�?? IEEE J. Quantum Electron. 23, 510-524 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, �??Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,�?? IEEE J. Quantum Electron. 23, 1938-1946 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. Broderick, and D. J. Richardson, �??Sensing with microstructured optical fibres,�?? Meas. Sci. Technol. 12, 854-858 (2001).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, �??Optical frequency metrology,�?? Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (7)

Phys. Rev. A (1)

N. Akhemediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

Phys. Rev. Lett. (4)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher�??order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. V. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higherorder solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

J. E. Rothenberg and D. Grischkowsky, �??Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers,�?? Phys. Rev. Lett. 62, 531-534 (1989).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).

Data kindly provided by R. H. Stolen.

Supplementary Material (4)

» Media 1: MOV (1606 KB)     
» Media 2: MOV (1910 KB)     
» Media 3: MOV (1597 KB)     
» Media 4: MOV (1866 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Experimental setup. MF: Microstructured fiber, OSA: Optical spectrum analyzer.

Fig. 2.
Fig. 2.

Group delay and dispersion of the highly birefringent MF. RW: radiated waves, SSFS: soliton self-frequency shift. The inset shows a microscope image of the fiber cross-section together with the relevant dimensions.

Fig. 3.
Fig. 3.

Evolution of the input pulse into supercontinuum in the highly birefringent MF.

Fig. 4.
Fig. 4.

Simulation of the first stages of the continuum formation. a) only β2 , b) β2 + SS + HOD, c) β2 + RS + SS and d) β2 + HOD + RS + SS.

Fig. 5.
Fig. 5.

Wavelength of the first Stokes component appearing in the spectrum vs. average input power for z equal to a) 20 cm and b) 5 m. The squares and the solid line represent the measured and calculated shift, respectively.

Fig. 6.
Fig. 6.

Supercontinuum generated in a) 20 cm and b) 5 m long MF.

Fig. 7.
Fig. 7.

Simulated time trace of the output. Both the sech fit and the modulation on the soliton tails resulting from interference between the solitons and the dispersive waves are outlined.

Fig. 8.
Fig. 8.

Phase-matching diagram calculated for the elliptical-core MF. The dotted, dashed, and solid lines represent the phase-matching condition for a peak power of ~0, 0.5 and 5 kW, respectively.

Fig. 9.
Fig. 9.

Supercontinuum generated in 1 m of the highly birefringent MF. Pav =84 mW and λp =731 nm.

Fig. 10.
Fig. 10.

Simulation of the spectrogram after a) 10 cm and b) 1 m of propagation along the MF. Pav =20 mW and λp =804 nm. The normalized intensity is plotted in a logarithmic scale. The animation represents the formation of the continuum as the pulses propagate along the fiber, each frame corresponding to a step of 1 cm of propagation. [Media 1] [Media 2]

Fig. 11.
Fig. 11.

Group delay and dispersion of the round-core MF. The inset shows a microscope image of the fiber cross-section together with the relevant dimensions.

Fig. 12.
Fig. 12.

Evolution of the input pulse into supercontinuum in the 14 m long round-core MF for λp =746 nm.

Fig. 13.
Fig. 13.

Evolution of the input pulse into supercontinuum in the 14 m long round-core MF for λp =831 nm.

Fig. 14.
Fig. 14.

Phase-matching diagram calculated for the round-core MF. The dotted, dashed, and solid lines represent the phase-matching condition for a peak power of ~0, 0.5 and 5 kW, respectively.

Fig. 15.
Fig. 15.

Supercontinuum generated in 1 m of the round-core MF: a) measured and b) simulated. λp =860 nm, Pav =120 mW, TFWHM =130 fs.

Fig. 16.
Fig. 16.

Supercontinuum generated in 1 m of the round-core MF for different pulse widths. a) 300 fs, b) 200 fs, and c) 130 fs. λp =810 nm, Pav =100 mW.

Fig. 17.
Fig. 17.

Simulation of the spectrogram after a) 20 cm and b) 1 m of propagation along the round-core MF. Pav =120 mW, λp =860 nm, TFWHM =130 fs. The normalized intensity is plotted in a logarithmic scale. The animation represents the formation of the continuum as the pulses propagate along the fiber, each frame corresponding to a step of 1 cm of propagation. [Media 3] [Media 4]

Tables (2)

Tables Icon

Table 1. Parameters for the highly birefringent MF (λ = 800 nm).

Tables Icon

Table 2. Parameters for the round-core MF (λ= 860 nm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 n i n + 1 n ! β n n A T n = ( 1 + i ω 0 T ) A + R ( T ) A ( z , T T ) 2 dT ,
R ( T ) = ( 1 f R ) δ ( T ) + f R h R ( T ) ,
h R ( T ) = τ 1 2 + τ 2 2 τ 1 τ 2 2 e T τ 2 sin ( T τ 1 ) ,
A k = A 0 ( 2 A 0 2 k + 1 ) N
T k = T 0 2 A 0 2 k + 1 ,
Δ ν k = 1.2904 λ 2 D ( λ ) q ( T k ) z T k 4 ,
2 ω p ω s + ω as .
Δϕ = ϕ ( ω a ) + ϕ ( ω as ) 2 ϕ ( ω p ) = L ( 2 n β 2 n ( 2 n ) ! ( ω a ω p ) 2 n + 2 γ P p ) = 0 .

Metrics