Abstract

Electrically switchable photonic crystals are simply and rapidly formed by holographic polymerization-induced phase separation of liquid crystal from a monomer-liquid crystal mixture. We report the fabrication and electro-optical properties of liquid-crystal-filled polymer photonic crystals of orthorhombic F symmetry. Inverse opal and fcc structures can also be obtained. The crystals exhibit electrically switchable Bragg diffraction at ~8–10 V/μm with crystal structure in good agreement with theoretical expectations. These photonic crystals compare favorably with liquid-crystal-imbibed colloidal crystal arrays.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, and A. Blanco, �??3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,�?? Adv. Mater. 9, 257-260 (1997).
    [CrossRef]
  3. K. Busch and S. John, �??Photonic band gap formation in certain self-organizing systems,�?? Phys. Rev. E 58, 3896-3908 (1998).
    [CrossRef]
  4. K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970 (1999).
    [CrossRef]
  5. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, �??Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,�?? Appl. Phys. Lett. 75, 932-934 (1999).
    [CrossRef]
  6. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, �??Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment,�?? Phys. Rev. Lett. 86, 4052-4055 (2001).
    [CrossRef] [PubMed]
  7. P. Mach, P.Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, and A. G. Yodh, �??Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,�?? Phys. Rev. E 65, 031720-1 �?? 031720-3 (2002).
    [CrossRef]
  8. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic formation of electro-optical polymer-liquid crystal photonic crystals,�?? Adv. Mater. 14, 187-191 (2002).
    [CrossRef]
  9. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, and W. W. Adams, �??Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,�?? Opt. Lett. 20, 1325-1327 (1995).
    [CrossRef] [PubMed]
  10. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,�?? Chem. Mater. 5, 1533-1538 (1993).
    [CrossRef]
  11. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  12. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).
  13. SQ2000 miniature fiber optic spectrometer, Ocean Optics, Inc., Dunedin, FL, <a href="http://www.oceanoptics.com">www.oceanoptics.com</a>.
  14. L. Z. Cai, X. L. Yang, and Y. R. Wang, �??All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,�?? Opt. Lett. 27, 900-902 (2002).
    [CrossRef]
  15. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).

Adv. Mater. (2)

R. Mayoral, J. Requena, J. S. Moya, C. Lopez, A. Cintas, H. Miguez, F. Meseguer, L. Vazquez, M. Holgado, and A. Blanco, �??3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,�?? Adv. Mater. 9, 257-260 (1997).
[CrossRef]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, �??Holographic formation of electro-optical polymer-liquid crystal photonic crystals,�?? Adv. Mater. 14, 187-191 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, �??Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,�?? Appl. Phys. Lett. 75, 932-934 (1999).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).

Chem. Mater. (1)

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, �??Bragg gratings in an acrylate polymer consisting of periodic polymer-dispersed liquid-crystal planes,�?? Chem. Mater. 5, 1533-1538 (1993).
[CrossRef]

Nature (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, �??Fabrication of photonic crystals for the visible spectrum by holographic lithography,�?? Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. E (2)

P. Mach, P.Wiltzius, M. Megens, D. A. Weitz, K. Lin, T. C. Lubensky, and A. G. Yodh, �??Electro-optic response and switchable Bragg diffraction for liquid crystals in colloid-templated materials,�?? Phys. Rev. E 65, 031720-1 �?? 031720-3 (2002).
[CrossRef]

K. Busch and S. John, �??Photonic band gap formation in certain self-organizing systems,�?? Phys. Rev. E 58, 3896-3908 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

K. Busch and S. John, �??Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,�?? Phys. Rev. Lett. 83, 967-970 (1999).
[CrossRef]

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, �??Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment,�?? Phys. Rev. Lett. 86, 4052-4055 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other (2)

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

SQ2000 miniature fiber optic spectrometer, Ocean Optics, Inc., Dunedin, FL, <a href="http://www.oceanoptics.com">www.oceanoptics.com</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental configuration for holographically recording photonic crystals. (a) 3D perspective of two-prism configuration with four laser beams. (b) Detailed top and side views of beam angles and polarization vectors.

Fig. 2.
Fig. 2.

Total experimental setup.

Fig. 3.
Fig. 3.

Computed intensity patterns in the xy plane with sp and pp configurations for (a), (b) and (c), (d), respectively. (a) θi= 45°, θ = 17.28°, z = 0. (b) θi= 45°, θ = 17.28°, z = (a/4)tanθ. (c) θi = 14.9°, θ = tan-1(2-1/2), z = 0. (d) θi = 0°, θ = 45°, z = 0. Red is high intensity, and blue/black is low intensity.

Fig. 4.
Fig. 4.

Bragg diffraction for light incident along the z axis in a sample with sp configuration and θi = 45°, θ = 17.28°. (a) Photograph of Bragg scattered light. (b) Bragg phase matching diagram showing reciprocal lattice vectors (G mn , blue and red) and incident (k i, green) and diffracted (k d, green) wave vectors.

Fig. 5.
Fig. 5.

SEM of sample fabricated in the sp configuration with θi = 45°, θ = 17.28°. (a) 3D perspective. (b) Top view.

Fig. 6
Fig. 6

Spectra of s-polarized light scattered from the (111) planes for different applied voltages in a sample recorded with θi = 0°, θ = 45° and the pp configuration. The inset illustrates the Bragg condition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = 4 + m n S mn exp ( i G mn · r )
k d = k i + G

Metrics