Abstract

We present an electro-optical switch implemented in coupled photonic crystal waveguides. The switch is proposed and analyzed using both the FDTD and PWM methods. The device is designed in a square lattice of silicon posts in air as well as in a hexagonal lattice of air holes in a silicon slab. The switching mechanism is a change in the conductance in the coupling region between the waveguides and hence modulating the coupling coefficient and eventually switching is achieved. Conductance is induced electrically by carrier injection or is induced optically by electron-hole pair generation. Low insertion loss and optical crosstalk in both the cross and bar switching states are predicted.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
    [Crossref]
  2. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.,  58, 2059–2062, (1987).
    [Crossref] [PubMed]
  3. S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.,  58, 2486, (1987).
    [Crossref] [PubMed]
  4. D. W. Prather, A. Sharkawy, and S. Shouyuan, “Photonic Crystals Design and Applications,” in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner, and W. A. Goddard, Eds. (CRC Press, Boca Raton, FL.2002).
  5. A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
    [Crossref]
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. (Princeton, New Jersey, 1995).
  7. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel Wavelength Division Multiplexing Using Photonic Crystals,” Appl. Opt.,  40, 2247–2252, (2001).
    [Crossref]
  8. D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
    [Crossref] [PubMed]
  9. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
    [Crossref]
  10. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
    [Crossref]
  11. D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
    [Crossref]
  12. R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
    [Crossref]
  13. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
    [Crossref]
  14. M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
    [Crossref]
  15. M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B,  62, R2247–R2250, (2000).
    [Crossref]
  16. M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B-Optical Physics,  18, 1362–1368, (2001).
    [Crossref]
  17. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.
  18. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B,  44, 8565–8571, (1991).
    [Crossref]
  19. D. Hermann, M. Frank, and K. Busch, “Photonic Band Structure Computations,” Opt. Express,  8, 167–172, (2001). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-167.
    [Crossref] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition. (Boston, MA: Artech House, 2000).
  21. L. L. Liou and A. Crespo, “Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations,” Microwave and optical Technology Letters,  26, 234–237, (2000).
    [Crossref]
  22. S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
    [Crossref]
  23. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab,” J. opt. Soc. Am. B,  16, 275–285, (1999).
    [Crossref]
  24. A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
    [Crossref]
  25. A. Yariv and P. Yeh, Optical waves in Crystals. (New York: John Wiley & Sons, 1984).
  26. M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
    [Crossref]
  27. S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
    [Crossref]
  28. R. A. Soref and B. E. Little, “Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators,” IEEE Photon. Technol. Lett.,  10, 1121–1123, (1998).
    [Crossref]
  29. M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing with Photonic Crystal Waveguide couplers,” J. Lightwave Technol.,  19, 1970–1975, (2001).
    [Crossref]
  30. S. M. Sze, Physics of Semiconductor Devices, 2nd ed: John Wiley & Sons Inc., 1981).
  31. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,  QE-23, 123–129, (1987).
    [Crossref]
  32. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B,  62, 4488–4492, (2000).
    [Crossref]
  33. S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B,  18, 162–165, (2001).
    [Crossref]

2002 (4)

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
[Crossref]

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
[Crossref]

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
[Crossref] [PubMed]

2001 (6)

2000 (9)

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B,  62, R2247–R2250, (2000).
[Crossref]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

L. L. Liou and A. Crespo, “Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations,” Microwave and optical Technology Letters,  26, 234–237, (2000).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B,  62, 4488–4492, (2000).
[Crossref]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
[Crossref]

1999 (3)

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab,” J. opt. Soc. Am. B,  16, 275–285, (1999).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

1998 (1)

R. A. Soref and B. E. Little, “Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators,” IEEE Photon. Technol. Lett.,  10, 1121–1123, (1998).
[Crossref]

1991 (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B,  44, 8565–8571, (1991).
[Crossref]

1987 (3)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.,  58, 2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.,  58, 2486, (1987).
[Crossref] [PubMed]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,  QE-23, 123–129, (1987).
[Crossref]

Adibi, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

Bayindir, M.

M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B,  62, R2247–R2250, (2000).
[Crossref]

Beckum, F. P. H. V.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Benisty, H.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,  QE-23, 123–129, (1987).
[Crossref]

Boscolo, S.

S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
[Crossref]

Busch, K.

Chen, C.

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

Chutinan, A.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B,  62, 4488–4492, (2000).
[Crossref]

Crespo, A.

L. L. Liou and A. Crespo, “Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations,” Microwave and optical Technology Letters,  26, 234–237, (2000).
[Crossref]

Doll, T.

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

Fan, J.

M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
[Crossref]

Fan, S.

S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B,  18, 162–165, (2001).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

Frank, M.

Groesen, E. V.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition. (Boston, MA: Artech House, 2000).

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

Hermann, D.

Hoekstra, H. J. W. M.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Houdre, R.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Joannopoulos, J. D.

S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B,  18, 162–165, (2001).
[Crossref]

M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. (Princeton, New Jersey, 1995).

John, S.

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.,  58, 2486, (1987).
[Crossref] [PubMed]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
[Crossref]

S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B,  18, 162–165, (2001).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Koshiba, M.

Krauss, T. F.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Lee, R. K.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

Liou, L. L.

L. L. Liou and A. Crespo, “Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations,” Microwave and optical Technology Letters,  26, 234–237, (2000).
[Crossref]

Little, B. E.

R. A. Soref and B. E. Little, “Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators,” IEEE Photon. Technol. Lett.,  10, 1121–1123, (1998).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

Loncar, M.

M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B-Optical Physics,  18, 1362–1368, (2001).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
[Crossref]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B,  44, 8565–8571, (1991).
[Crossref]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. (Princeton, New Jersey, 1995).

Midiro, M.

S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
[Crossref]

Murakowski, J.

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

Noda, S.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B,  62, 4488–4492, (2000).
[Crossref]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Okano, M.

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
[Crossref]

Olivier, S.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Oseterle, U.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Ozbay, E.

M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B,  62, R2247–R2250, (2000).
[Crossref]

Painter, O.

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B,  44, 8565–8571, (1991).
[Crossref]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
[Crossref]

Prather, D. W.

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
[Crossref] [PubMed]

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel Wavelength Division Multiplexing Using Photonic Crystals,” Appl. Opt.,  40, 2247–2252, (2001).
[Crossref]

D. W. Prather, A. Sharkawy, and S. Shouyuan, “Photonic Crystals Design and Applications,” in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner, and W. A. Goddard, Eds. (CRC Press, Boca Raton, FL.2002).

Pustai, D.

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
[Crossref] [PubMed]

Rattier, M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Ridder, R. M. D.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Rue, R. M. D. L.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Scherer, A.

M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B-Optical Physics,  18, 1362–1368, (2001).
[Crossref]

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
[Crossref]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab,” J. opt. Soc. Am. B,  16, 275–285, (1999).
[Crossref]

Sharkawy, A.

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
[Crossref] [PubMed]

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel Wavelength Division Multiplexing Using Photonic Crystals,” Appl. Opt.,  40, 2247–2252, (2001).
[Crossref]

D. W. Prather, A. Sharkawy, and S. Shouyuan, “Photonic Crystals Design and Applications,” in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner, and W. A. Goddard, Eds. (CRC Press, Boca Raton, FL.2002).

Shi, S.

Shouyuan, S.

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, “Tunable Photonic Crystal Microcavities,” Appl. Opt.,  41, 5574–5579, (2002).
[Crossref] [PubMed]

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

D. W. Prather, A. Sharkawy, and S. Shouyuan, “Photonic Crystals Design and Applications,” in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner, and W. A. Goddard, Eds. (CRC Press, Boca Raton, FL.2002).

Smith, C. J. M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Someda, C. G.

S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
[Crossref]

Soref, R. A.

R. A. Soref and B. E. Little, “Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators,” IEEE Photon. Technol. Lett.,  10, 1121–1123, (1998).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,  QE-23, 123–129, (1987).
[Crossref]

Stoffer, R.

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed: John Wiley & Sons Inc., 1981).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition. (Boston, MA: Artech House, 2000).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Temmelkuran, B.

M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
[Crossref]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

Venkataraman, S.

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

Vuckovic, J.

M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B-Optical Physics,  18, 1362–1368, (2001).
[Crossref]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol.,  18, 1402–1411, (2000).
[Crossref]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab,” J. opt. Soc. Am. B,  16, 275–285, (1999).
[Crossref]

Weisbuch, C.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. (Princeton, New Jersey, 1995).

Xu, Y.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.,  58, 2059–2062, (1987).
[Crossref] [PubMed]

Yariv, A.

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

A. Yariv and P. Yeh, Optical waves in Crystals. (New York: John Wiley & Sons, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical waves in Crystals. (New York: John Wiley & Sons, 1984).

Appl. Opt. (2)

Appl. Phys. Lett. (4)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in Planar Photonic Crystals,” Appl. Phys. Lett.,  77, 1937–1939, (2000).
[Crossref]

A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.,  80, 1698–1700, (2002).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering,” Appl. Phys. Lett.,  74, 1370–1372, (1999).
[Crossref]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre, and U. Oseterle, “Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries,” Appl. Phys. Lett.,  77, 2813–2815, (2000).
[Crossref]

Electron. Lett. (1)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv, and A. Scherer, “Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap,” Electron. Lett.,  36, 1376–1378, (2000).
[Crossref]

IEEE J. Quant. Electron. (1)

S. Boscolo, M. Midiro, and C. G. Someda, “Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides,” IEEE J. Quant. Electron.,  38, 47–53, (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,  QE-23, 123–129, (1987).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. A. Soref and B. E. Little, “Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators,” IEEE Photon. Technol. Lett.,  10, 1121–1123, (1998).
[Crossref]

J. Lightwave Technol. (2)

J. opt. Soc. Am. B (1)

J. Opt. Soc. Am. B-Optical Physics (1)

M. Loncar, J. Vuckovic, and A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. Soc. Am. B-Optical Physics,  18, 1362–1368, (2001).
[Crossref]

Microwave and optical Technology Letters (1)

L. L. Liou and A. Crespo, “Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations,” Microwave and optical Technology Letters,  26, 234–237, (2000).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen, and F. P. H. V. Beckum, “Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling Between Waveguides and Filters,” Opt. Quantum Electron.,  32, 947–961, (2000).
[Crossref]

Optics Letters (1)

D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide,” Optics Letters,  27, 1601–1603, (2002).
[Crossref]

Phys. Rev. B (6)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B,  44, 8565–8571, (1991).
[Crossref]

M. Bayindir, B. Temmelkuran, and E. Ozbay, “Propagation of Photons by Hopping: A Waveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals,” Phys. Rev. B,  61, R11855–R11858, (2000).
[Crossref]

M. Bayindir and E. Ozbay, “Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal,” Phys. Rev. B,  62, R2247–R2250, (2000).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B,  62, 4488–4492, (2000).
[Crossref]

M. L. Povinelli, S. G. Johnson, J. Fan, and J. D. Joannopoulos, “Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap,” Phys. Rev. B,  64, 753131–753138, (2001).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B,  60, 5751–5758, (1999).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.,  58, 2059–2062, (1987).
[Crossref] [PubMed]

S. John, “Strong Localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.,  58, 2486, (1987).
[Crossref] [PubMed]

Other (6)

D. W. Prather, A. Sharkawy, and S. Shouyuan, “Photonic Crystals Design and Applications,” in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner, and W. A. Goddard, Eds. (CRC Press, Boca Raton, FL.2002).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. (Princeton, New Jersey, 1995).

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little, and H. A. Haus, “High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation.” USA, 2000.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition. (Boston, MA: Artech House, 2000).

A. Yariv and P. Yeh, Optical waves in Crystals. (New York: John Wiley & Sons, 1984).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed: John Wiley & Sons Inc., 1981).

Supplementary Material (2)

» Media 1: GIF (172 KB)     
» Media 2: GIF (263 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Coupled Photonic Crystal Waveguided (CPhCW) system consisting of two closely coupled PBG waveguides separated by two PBG layers of length Lc. system formed using a periodic array of silicon pillars arranged in square lattice.

Fig. 2
Fig. 2

(a) Dispersion diagram for the structure shown in Fig. 1 obtained using both PWM and FDTD methods. Two solutions corresponding to the eigenmodes (odd and even) exists within the band gap (0.23<a/λ<0.41). Where dashed line corresponds to FDTD results and solid line solution corresponds to PWM results. (b) Modal dispersion curves of the eigenmodes of the system of CPhCW shown in (a). Where the odd mode is the high frequency mode and the even mode is the low frequency mode. A straight line drawn from a normalized frequency axis will intersect with the two curves from which modal propagation constants of the even and the odd modes can be determined and hence the coupling length Lc can be calculated. (c) Dispersion diagram for a system of CPhCW consisting of two waveguides created in a hexagonal array of air holes in high dielectric background. Three layers of air holes in the coupling region separate the two waveguides. Dispersion diagram was obtained using PWM, shows that two solutions (even and odd) modes exist within the band gap (0.24786<a/λ<0.3131). (d) Modal dispersion curves of the eigenmodes of the system of CPhCW shown in bottom right corner of plot (c), where the odd mode is the low frequency mode and the even mode is the low frequency mode. Similar to plot in (b) a straight line drawn from a normalized frequency axis will intersect with the two curves from which modal propagation constants of the odd and even modes can be extracted and used to calculate the frequency dependant coupling length Lc.

Fig. 3
Fig. 3

Coupled Photonic Crystal Waveguided (CPhCW) system consisting of two closely coupled PBG waveguides separated by two PBG layers of length Lc. system formed using a periodic array of air holes arranged in hexagonal lattice. Increasing the refractive index in the wave guiding direction to create an acceptor type waveguide created single mode waveguide. [26, 27]

Fig 4.
Fig 4.

Four snapshots for FDTD simulations of 2×2 electro-optical switch shown in Fig.1. the switch is formed in a square photonic crystal lattice of silicon pillars.

Fig. 5
Fig. 5

Calculated switching characteristics of Fig. 1 crossbar switch (silicon pillars case).

Fig. 6.
Fig. 6.

Dependence of σ upon N and P doping.

Fig. 6
Fig. 6

Four snapshots for FDTD simulations of 2×2 electro-optical switch formed in a perforated slab of air holes arranged on a hexagonal photonic crystal lattice.

Fig. 7
Fig. 7

Calculated switching characteristics of Fig. 3 crossbar switch (perforated slab case).

Fig. 8
Fig. 8

(171KB) Movie 2×2 cross bar PhC switch (silicon pillars) in OFF state.

Fig. 9
Fig. 9

(253KB) Movie 2×2 cross bar PhC switch (silicon pillars) in ON state.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L c = π ( β e β o ) .
L c = π ( 2.568 2.357 ) × 10 6 = 14.88 μm
= 14.88 μm 0.5425 μm = 28 a = 9.6 λ .
L c = π ( 3.541 3.054 ) × 10 6 = 6.44 μm
= 6.44 μm 0.4185 μm = 16 a = 4.0 λ .

Metrics