Abstract

We present an electro-optical switch implemented in coupled photonic crystal waveguides. The switch is proposed and analyzed using both the FDTD and PWM methods. The device is designed in a square lattice of silicon posts in air as well as in a hexagonal lattice of air holes in a silicon slab. The switching mechanism is a change in the conductance in the coupling region between the waveguides and hence modulating the coupling coefficient and eventually switching is achieved. Conductance is induced electrically by carrier injection or is induced optically by electron-hole pair generation. Low insertion loss and optical crosstalk in both the cross and bar switching states are predicted.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
    [CrossRef]
  2. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062, (1987).
    [CrossRef] [PubMed]
  3. S. John, "Strong Localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486, (1987).
    [CrossRef] [PubMed]
  4. D. W. Prather, A. Sharkawy and S. Shouyuan, "Photonic Crystals Design and Applications," in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner and W. A. Goddard III, Eds. (CRC Press, Boca Raton, FL. 2002).
  5. A. Adibi, R. K. Lee, Y. Xu, A. Yariv and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378, (2000).
    [CrossRef]
  6. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton, New Jersey, 1995).
  7. A. Sharkawy, S. Shi and D. W. Prather, "Multichannel Wavelength Division Multiplexing Using Photonic Crystals," Appl. Opt. 40, 2247-2252, (2001).
    [CrossRef]
  8. D. Pustai, A. Sharkawy, S. Shouyuan and D. W. Prather, "Tunable Photonic Crystal Microcavities," Appl. Opt. 41, 5574-5579, (2002).
    [CrossRef] [PubMed]
  9. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer and T. P. Pearsall, "Waveguiding in Planar Photonic Crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
    [CrossRef]
  10. M. Loncar, T. Doll, J. Vuckovic and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," J. Lightwave Technol. 18, 1402-1411, (2000).
    [CrossRef]
  11. D. W. Prather, J. Murakowski, S. Shouyuan, S. Venkataraman, A. Sharkawy, C. Chen and D. Pustai, "High Efficiency Coupling Structure for a single Line-Defect Photonic Crystal Waveguide," Opt. Lett. 27, 1601-1603, (2002).
    [CrossRef]
  12. R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen and F. P. H. V. Beckum, "Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling BetweenWaveguides and Filters," Opt. Quantum Electron. 32, 947-961, (2000).
    [CrossRef]
  13. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre and U. Oseterle, "Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries," Appl. Phys. Lett. 77, 2813-2815, (2000).
    [CrossRef]
  14. M. Bayindir, B. Temmelkuran and E. Ozbay, "Propagation of Photons by Hopping: Awaveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals," Phys. Rev. B 61, R11855-R11858, (2000).
    [CrossRef]
  15. M. Bayindir and E. Ozbay, "Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal," Phys. Rev. B 62, R2247-R2250, (2000).
    [CrossRef]
  16. M. Loncar, J. Vuckovic and A. Scherer, "Methods for controlling positions of guided modes of photoniccrystal waveguides," J. Opt. Soc. Am. B 18, 1362-1368, (2001).
    [CrossRef]
  17. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little and H. A. Haus, "High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation" USA, 2000.
  18. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571, (1991).
    [CrossRef]
  19. D. Hermann, M. Frank and K. Busch, "Photonic Band Structure Computations," Opt. Express 8, 167-172, (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-167">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-1-167</a>.
    [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Boston, MA: Artech House, 2000).
  21. L. L. Liou and A. Crespo, "Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations," Microwave Opt. Technol. Lett. 26, 234-237, (2000).
    [CrossRef]
  22. S. Boscolo, M. Midiro and C. G. Someda, "Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides," IEEE J. Quantum Electron. 38, 47-53, (2002).
    [CrossRef]
  23. O. Painter, J. Vuckovic and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically think dielectric slab," J. Opt. Soc. Am. B 16, 275-285, (1999).
    [CrossRef]
  24. A. Chutinan, M. Okano and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700, (2002).
    [CrossRef]
  25. A. Yariv and P. Yeh, Optical waves in Crystals (New York: John Wiley & Sons, 1984).
  26. M. L. Povinelli, S. G. Johnson, J. Fan and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 753131-753138, (2001).
    [CrossRef]
  27. S. G. Johnson, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758, (1999).
    [CrossRef]
  28. R. A. Soref and B. E. Little, "Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123, (1998).
    [CrossRef]
  29. M. Koshiba, "Wavelength Division Multiplexing and Demultiplexing with Photonic Crystal Waveguide couplers," J. Lightwave Technol. 19, 1970-1975, (2001).
    [CrossRef]
  30. S. M. Sze, Physics of Semiconductor Devices, 2nd ed (John Wiley & Sons Inc., 1981).
  31. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129, (1987).
    [CrossRef]
  32. A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492, (2000).
    [CrossRef]
  33. S. Fan, S. G. Johnson and J. D. Joannopoulos, "Waveguide branches in photonic crystals," J. Opt. Soc. Am. B 18, 162-165, (2001).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, "Photonic Crystals for Micro Lightwave Circuits Using Wavelength-Dependent Angular Beam Steering," Appl. Phys. Lett. 74, 1370-1372, (1999).
[CrossRef]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. D. L. Rue, R. Houdre and U. Oseterle, "Low-Loss Channel Waveguides with Two-Dimensional Photonic Crystal Boundaries," Appl. Phys. Lett. 77, 2813-2815, (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer and T. P. Pearsall, "Waveguiding in Planar Photonic Crystals," Appl. Phys. Lett. 77, 1937-1939, (2000).
[CrossRef]

A. Chutinan, M. Okano and S. Noda, "Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 80, 1698-1700, (2002).
[CrossRef]

Electron. Lett. (1)

A. Adibi, R. K. Lee, Y. Xu, A. Yariv and A. Scherer, "Design of photonic crystal optical waveguides with single mode propagation in the photonic bandgap," Electron. Lett. 36, 1376-1378, (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Boscolo, M. Midiro and C. G. Someda, "Coupling and Decoupling of Electromagnetic Waves in Parallel 2-D Photonic Crystal Waveguides," IEEE J. Quantum Electron. 38, 47-53, (2002).
[CrossRef]

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129, (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. A. Soref and B. E. Little, "Proposed N-Wavelength M-Fiber WDM crossconnect switch using Active Microring Resonators," IEEE Photon. Technol. Lett. 10, 1121-1123, (1998).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Microwave Opt. Technol. Lett. (1)

L. L. Liou and A. Crespo, "Dielectric Optical waveguide coupling analysis using two-dimensional finite difference in time-domain simulations," Microwave Opt. Technol. Lett. 26, 234-237, (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

R. Stoffer, H. J. W. M. Hoekstra, R. M. D. Ridder, E. V. Groesen and F. P. H. V. Beckum, "Numerical Studies of 2D Photonic Crystals: Waveguides, Coupling BetweenWaveguides and Filters," Opt. Quantum Electron. 32, 947-961, (2000).
[CrossRef]

Phys. Rev. B (6)

M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571, (1991).
[CrossRef]

M. Bayindir, B. Temmelkuran and E. Ozbay, "Propagation of Photons by Hopping: Awaveguiding Mechanism Through Localized Coupled Cavities in Three-Dimensional Photonic Crystals," Phys. Rev. B 61, R11855-R11858, (2000).
[CrossRef]

M. Bayindir and E. Ozbay, "Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal," Phys. Rev. B 62, R2247-R2250, (2000).
[CrossRef]

A. Chutinan and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B 62, 4488-4492, (2000).
[CrossRef]

M. L. Povinelli, S. G. Johnson, J. Fan and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 753131-753138, (2001).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve and J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758, (1999).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062, (1987).
[CrossRef] [PubMed]

S. John, "Strong Localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486, (1987).
[CrossRef] [PubMed]

Other (6)

D. W. Prather, A. Sharkawy and S. Shouyuan, "Photonic Crystals Design and Applications," in Handbook of Nanoscience, Engineering, and Technology, Electrical Engineering Handbook, G. J. Iafrate, S. E. Lyshevski, D. W. Brenner and W. A. Goddard III, Eds. (CRC Press, Boca Raton, FL. 2002).

J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton, New Jersey, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Second Edition (Boston, MA: Artech House, 2000).

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, B. E. Little and H. A. Haus, "High Efficiency Channel drop filter with Absorption-Induced On/Off Switching and Modulation" USA, 2000.

A. Yariv and P. Yeh, Optical waves in Crystals (New York: John Wiley & Sons, 1984).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed (John Wiley & Sons Inc., 1981).

Supplementary Material (2)

» Media 1: GIF (172 KB)     
» Media 2: GIF (263 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Coupled Photonic Crystal Waveguided (CPhCW) system consisting of two closely coupled PBG waveguides separated by two PBG layers of length Lc. system formed using a periodic array of silicon pillars arranged in square lattice.

Fig. 2
Fig. 2

(a) Dispersion diagram for the structure shown in Fig. 1 obtained using both PWM and FDTD methods. Two solutions corresponding to the eigenmodes (odd and even) exists within the band gap (0.23<a/λ<0.41). Where dashed line corresponds to FDTD results and solid line solution corresponds to PWM results. (b) Modal dispersion curves of the eigenmodes of the system of CPhCW shown in (a). Where the odd mode is the high frequency mode and the even mode is the low frequency mode. A straight line drawn from a normalized frequency axis will intersect with the two curves from which modal propagation constants of the even and the odd modes can be determined and hence the coupling length Lc can be calculated. (c) Dispersion diagram for a system of CPhCW consisting of two waveguides created in a hexagonal array of air holes in high dielectric background. Three layers of air holes in the coupling region separate the two waveguides. Dispersion diagram was obtained using PWM, shows that two solutions (even and odd) modes exist within the band gap (0.24786<a/λ<0.3131). (d) Modal dispersion curves of the eigenmodes of the system of CPhCW shown in bottom right corner of plot (c), where the odd mode is the low frequency mode and the even mode is the low frequency mode. Similar to plot in (b) a straight line drawn from a normalized frequency axis will intersect with the two curves from which modal propagation constants of the odd and even modes can be extracted and used to calculate the frequency dependant coupling length Lc.

Fig. 3
Fig. 3

Coupled Photonic Crystal Waveguided (CPhCW) system consisting of two closely coupled PBG waveguides separated by two PBG layers of length Lc. system formed using a periodic array of air holes arranged in hexagonal lattice. Increasing the refractive index in the wave guiding direction to create an acceptor type waveguide created single mode waveguide. [26, 27]

Fig 4.
Fig 4.

Four snapshots for FDTD simulations of 2×2 electro-optical switch shown in Fig.1. the switch is formed in a square photonic crystal lattice of silicon pillars.

Fig. 5
Fig. 5

Calculated switching characteristics of Fig. 1 crossbar switch (silicon pillars case).

Fig. 6.
Fig. 6.

Dependence of σ upon N and P doping.

Fig. 6
Fig. 6

Four snapshots for FDTD simulations of 2×2 electro-optical switch formed in a perforated slab of air holes arranged on a hexagonal photonic crystal lattice.

Fig. 7
Fig. 7

Calculated switching characteristics of Fig. 3 crossbar switch (perforated slab case).

Fig. 8
Fig. 8

(171KB) Movie 2×2 cross bar PhC switch (silicon pillars) in OFF state.

Fig. 9
Fig. 9

(253KB) Movie 2×2 cross bar PhC switch (silicon pillars) in ON state.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L c = π ( β e β o ) .
L c = π ( 2.568 2.357 ) × 10 6 = 14.88 μm
= 14.88 μm 0.5425 μm = 28 a = 9.6 λ .
L c = π ( 3.541 3.054 ) × 10 6 = 6.44 μm
= 6.44 μm 0.4185 μm = 16 a = 4.0 λ .

Metrics