Abstract

Despite a growing need, oceanographers are limited by existing technological constrains and are unable to observe aquatic microbes in their natural setting. In order to provide a simple and easy to implement solution for such studies, a new Thin Light Sheet Microscope (TLSM) has been developed. The TLSM utilizes a well-defined sheet of laser light, which has a narrow (23 micron) axial dimension over a 1 mm × 1 mm field of view. This light sheet is positioned precisely within the depth of field of the microscope’s objective lens. The technique thus utilizes conventional microscope optics but replaces the illumination system. The advantages of the TLSM are two-fold: First, it concentrates light only where excitation is needed, thus maximizing the efficiency of the illumination source. Secondly, the TLSM maximizes image sharpness while at the same time minimizing the level of background noise. Particles that are not located within the objective’s depth of field are not illuminated and therefore do not contribute to an out-of-focus image. Images from a prototype system that used SYBR Green I fluorescence stain in order to localize single bacteria are reported. The bacteria were in a relatively large and undisturbed volume of 4ml, which contained natural seawater. The TLSM can be used for fresh water studies of bacteria with no modification. The microscope permits the observation of interactions at the microscale and has potential to yield insights into how microbes structure pelagic ecosystems.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

Volumetric HiLo microscopy employing an electrically tunable lens

Katrin Philipp, André Smolarski, Nektarios Koukourakis, Andreas Fischer, Moritz Stürmer, Ulrike Wallrabe, and Jürgen W Czarske
Opt. Express 24(13) 15029-15041 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
    [Crossref]
  2. P. J. S. Franks and J. S. Jaffe, “Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer, : OSST,” Marine Ecology Progress Series, 220, (2001).
    [Crossref]
  3. F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
    [Crossref]
  4. L. Legendre and J. LeFevre, “Microbial food webs and the export of biogenic carbon in oceans,” Aquat. Microb. Ecol. 9, 69–77 (1995).
    [Crossref]
  5. T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling. 2nd Edition. (Academic Press, New York1998).
  6. I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
    [Crossref]
  7. A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
    [Crossref]
  8. A. L. Alldredge and M. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
    [Crossref]
  9. A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
    [Crossref]
  10. A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
    [Crossref]
  11. T. Nagata and D. Kirchman, “Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,” Adv. Microb. Ecol. 15, 81–103 (1997).
  12. F. Azam, “Microbial control of oceanic carbon flux: The plot thickens,” Science 280, 694–696 (1998).
    [Crossref]
  13. F. Azam and D. C. Smith, “Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view,” In: S. Demers (ed.) Particle analysis in oceanography. (Springer-Verlag,213–2361991).
    [Crossref]
  14. L. M. Proctor and J. A. Fuhrman, “Roles of viral infection in organic particle flux,”Mar. Ecol. Prog. Ser. 69,133–142 (1991).
    [Crossref]
  15. A. L. Alldredge and Y. Cohen, “Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,”Science 235,687–691 (1987).
    [Crossref]
  16. D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
    [Crossref]
  17. N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
    [Crossref] [PubMed]
  18. M. Karner and J. A. Fuhrman, “Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,” Appl. Environ. Microbiol. 63, 1208–1213 (1997).
    [PubMed]
  19. F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
    [Crossref]
  20. J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).
  21. R. T. Noble and J. A. Fuhrman, “Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,” Aquat. Microb. Ecol. 14, 113–118 (1998).
    [Crossref]
  22. J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
    [Crossref] [PubMed]
  23. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
    [Crossref]
  24. T. Wilson and C. Sheppard. “Theory and practice of scanning optical microscopy,” (Academic Press, London,1984).
  25. Steffen Lindek and Ernst H. K. Stelzer “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am.-A 13, 479–482 (1996).
    [Crossref]
  26. L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
    [Crossref]
  27. E. H. K. Stelzer and S. Lindek “Fundamental reduction of the observation volume in far-field light micros copy by detection orthogonal to the illumination axis: confocal theta microscopy,” Optics Communications 111, 536–547 (1994)
    [Crossref]
  28. D. A. Agard, “Optical Sectioning microscopy: Cellular architecture in three dimensions,” Ann. Rev. Biophys. Bioeng., 13, 191–219 (1984).
    [Crossref]
  29. F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).
  30. B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
    [Crossref] [PubMed]
  31. F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
    [Crossref]
  32. J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).
  33. E. Gratton, “Laser sources for confocal and two-photon microscopy,” Chapter in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances. Ed., Alberto Diaspro, (Wiley & Sons, Inc.2000).
  34. S. Inoué and K. Spring, “Video Microscopy: The Fundamentals,” (New York: Plenum,1997).
  35. C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
    [Crossref]
  36. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658:661, (1983).
    [Crossref] [PubMed]
  37. D. Hanselman and B. Littlefield, Mastering MATLAB: A Comprehensive Tutorial and Reference, (Prentice-Hall, Inc.,1996).

2001 (1)

P. J. S. Franks and J. S. Jaffe, “Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer, : OSST,” Marine Ecology Progress Series, 220, (2001).
[Crossref]

2000 (2)

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
[Crossref]

1998 (4)

R. T. Noble and J. A. Fuhrman, “Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,” Aquat. Microb. Ecol. 14, 113–118 (1998).
[Crossref]

J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
[Crossref]

F. Azam, “Microbial control of oceanic carbon flux: The plot thickens,” Science 280, 694–696 (1998).
[Crossref]

N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
[Crossref] [PubMed]

1997 (4)

M. Karner and J. A. Fuhrman, “Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,” Appl. Environ. Microbiol. 63, 1208–1213 (1997).
[PubMed]

F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
[Crossref]

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

T. Nagata and D. Kirchman, “Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,” Adv. Microb. Ecol. 15, 81–103 (1997).

1996 (3)

A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
[Crossref]

Steffen Lindek and Ernst H. K. Stelzer “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am.-A 13, 479–482 (1996).
[Crossref]

L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
[Crossref]

1995 (2)

L. Legendre and J. LeFevre, “Microbial food webs and the export of biogenic carbon in oceans,” Aquat. Microb. Ecol. 9, 69–77 (1995).
[Crossref]

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

1994 (1)

E. H. K. Stelzer and S. Lindek “Fundamental reduction of the observation volume in far-field light micros copy by detection orthogonal to the illumination axis: confocal theta microscopy,” Optics Communications 111, 536–547 (1994)
[Crossref]

1993 (4)

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
[Crossref]

1992 (1)

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

1991 (1)

L. M. Proctor and J. A. Fuhrman, “Roles of viral infection in organic particle flux,”Mar. Ecol. Prog. Ser. 69,133–142 (1991).
[Crossref]

1990 (1)

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

1989 (1)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

1988 (2)

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

A. L. Alldredge and M. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[Crossref]

1987 (2)

A. L. Alldredge and Y. Cohen, “Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,”Science 235,687–691 (1987).
[Crossref]

J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
[Crossref] [PubMed]

1984 (1)

D. A. Agard, “Optical Sectioning microscopy: Cellular architecture in three dimensions,” Ann. Rev. Biophys. Bioeng., 13, 191–219 (1984).
[Crossref]

1983 (1)

Agard, D. A.

D. A. Agard, “Optical Sectioning microscopy: Cellular architecture in three dimensions,” Ann. Rev. Biophys. Bioeng., 13, 191–219 (1984).
[Crossref]

Aggarwal, J. K.

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

Aggarwal, S. J.

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

Alldredge, A. L.

A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
[Crossref]

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

A. L. Alldredge and M. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[Crossref]

A. L. Alldredge and Y. Cohen, “Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,”Science 235,687–691 (1987).
[Crossref]

Amos, W.B.

J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
[Crossref] [PubMed]

Azam, F.

F. Azam, “Microbial control of oceanic carbon flux: The plot thickens,” Science 280, 694–696 (1998).
[Crossref]

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

F. Azam and D. C. Smith, “Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view,” In: S. Demers (ed.) Particle analysis in oceanography. (Springer-Verlag,213–2361991).
[Crossref]

Bailey, B.

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

Blackburn, N.

N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
[Crossref] [PubMed]

Blackburn, T. H.

T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling. 2nd Edition. (Academic Press, New York1998).

Bovik, A. C.

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

Brakenhoff, G. J.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

Cogswell, C. M.

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

Cohen, Y.

A. L. Alldredge and Y. Cohen, “Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,”Science 235,687–691 (1987).
[Crossref]

Conchello, J. A.

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

Cristoph, C.

L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
[Crossref]

Diller, K. R.

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

Dillon, S.

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

Farkas, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

Fenchel, T.

N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
[Crossref] [PubMed]

T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling. 2nd Edition. (Academic Press, New York1998).

Fordham, M.

J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
[Crossref] [PubMed]

Franks, P. J. S.

P. J. S. Franks and J. S. Jaffe, “Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer, : OSST,” Marine Ecology Progress Series, 220, (2001).
[Crossref]

J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
[Crossref]

Fuhrman, J. A.

R. T. Noble and J. A. Fuhrman, “Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,” Aquat. Microb. Ecol. 14, 113–118 (1998).
[Crossref]

M. Karner and J. A. Fuhrman, “Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,” Appl. Environ. Microbiol. 63, 1208–1213 (1997).
[PubMed]

L. M. Proctor and J. A. Fuhrman, “Roles of viral infection in organic particle flux,”Mar. Ecol. Prog. Ser. 69,133–142 (1991).
[Crossref]

Gottschal, J. C.

F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
[Crossref]

Gratton, E.

E. Gratton, “Laser sources for confocal and two-photon microscopy,” Chapter in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances. Ed., Alberto Diaspro, (Wiley & Sons, Inc.2000).

Gray, M.H.B.

C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
[Crossref]

Hagström, Å.

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

Hanselman, D.

D. Hanselman and B. Littlefield, Mastering MATLAB: A Comprehensive Tutorial and Reference, (Prentice-Hall, Inc.,1996).

Heissenberger, A.

A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
[Crossref]

Herndl, G. J.

A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
[Crossref]

Inoué, S.

S. Inoué and K. Spring, “Video Microscopy: The Fundamentals,” (New York: Plenum,1997).

Jaffe, J. S.

P. J. S. Franks and J. S. Jaffe, “Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer, : OSST,” Marine Ecology Progress Series, 220, (2001).
[Crossref]

J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
[Crossref]

Kantalis, K.

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

Karner, M.

M. Karner and J. A. Fuhrman, “Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,” Appl. Environ. Microbiol. 63, 1208–1213 (1997).
[PubMed]

Kazuki, T.

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

King, G. M.

T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling. 2nd Edition. (Academic Press, New York1998).

Kirchman, D.

T. Nagata and D. Kirchman, “Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,” Adv. Microb. Ecol. 15, 81–103 (1997).

Kogure, K.

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

Koike, I.

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

Lanni, F.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

LeFevre, J.

L. Legendre and J. LeFevre, “Microbial food webs and the export of biogenic carbon in oceans,” Aquat. Microb. Ecol. 9, 69–77 (1995).
[Crossref]

Legendre, L.

L. Legendre and J. LeFevre, “Microbial food webs and the export of biogenic carbon in oceans,” Aquat. Microb. Ecol. 9, 69–77 (1995).
[Crossref]

Leising, A. W.

J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
[Crossref]

Leppard, G. G.

A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
[Crossref]

Lindek, S.

E. H. K. Stelzer and S. Lindek “Fundamental reduction of the observation volume in far-field light micros copy by detection orthogonal to the illumination axis: confocal theta microscopy,” Optics Communications 111, 536–547 (1994)
[Crossref]

Lindek, Steffen

Steffen Lindek and Ernst H. K. Stelzer “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am.-A 13, 479–482 (1996).
[Crossref]

Littlefield, B.

D. Hanselman and B. Littlefield, Mastering MATLAB: A Comprehensive Tutorial and Reference, (Prentice-Hall, Inc.,1996).

Logan, B. E.

A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
[Crossref]

Macias-Garz, F.

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

Meinhart, C.D.

C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
[Crossref]

Mitchell, F.

N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
[Crossref] [PubMed]

Mitchell, J. G.

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

Nagata, T.

T. Nagata and D. Kirchman, “Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,” Adv. Microb. Ecol. 15, 81–103 (1997).

Nanninga, A.

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

Noble, R. T.

R. T. Noble and J. A. Fuhrman, “Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,” Aquat. Microb. Ecol. 14, 113–118 (1998).
[Crossref]

Ohwada, K.

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

Passow, U.

A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
[Crossref]

Pearson, L.

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

Prins, R. A.

F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
[Crossref]

Proctor, L. M.

L. M. Proctor and J. A. Fuhrman, “Roles of viral infection in organic particle flux,”Mar. Ecol. Prog. Ser. 69,133–142 (1991).
[Crossref]

Schut, F.

F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
[Crossref]

Self, S. A.

Sheppard, C.

T. Wilson and C. Sheppard. “Theory and practice of scanning optical microscopy,” (Academic Press, London,1984).

Shibata, A.

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

Shigemitsu, H.

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

Silver, M.

A. L. Alldredge and M. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[Crossref]

Simon, M.

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

Smith, D. C.

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

F. Azam and D. C. Smith, “Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view,” In: S. Demers (ed.) Particle analysis in oceanography. (Springer-Verlag,213–2361991).
[Crossref]

Spring, K.

S. Inoué and K. Spring, “Video Microscopy: The Fundamentals,” (New York: Plenum,1997).

Spronsen, E. A. van

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

Steffen, L.

L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
[Crossref]

Stelzer, E. H. K.

L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
[Crossref]

E. H. K. Stelzer and S. Lindek “Fundamental reduction of the observation volume in far-field light micros copy by detection orthogonal to the illumination axis: confocal theta microscopy,” Optics Communications 111, 536–547 (1994)
[Crossref]

Stelzer, Ernst H. K.

Steffen Lindek and Ernst H. K. Stelzer “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am.-A 13, 479–482 (1996).
[Crossref]

Steward, G. F.

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

Taylor, D. L.

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

Tescher, A. G.

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

Voort, H. T. M. van der

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

Wereley, S.T.

C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
[Crossref]

White, J.G.

J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
[Crossref] [PubMed]

Wilson, T.

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

T. Wilson and C. Sheppard. “Theory and practice of scanning optical microscopy,” (Academic Press, London,1984).

Adv. Microb. Ecol. (1)

T. Nagata and D. Kirchman, “Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,” Adv. Microb. Ecol. 15, 81–103 (1997).

Ann. Rev. Biophys. Bioeng., (1)

D. A. Agard, “Optical Sectioning microscopy: Cellular architecture in three dimensions,” Ann. Rev. Biophys. Bioeng., 13, 191–219 (1984).
[Crossref]

Appl. Enivron. Microbiol. (1)

J. G. Mitchell, L. Pearson, S. Dillon, and K. Kantalis, “Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,” Appl. Enivron. Microbiol. 61, 4436–4440 (1995).

Appl. Environ. Microbiol. (1)

M. Karner and J. A. Fuhrman, “Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,” Appl. Environ. Microbiol. 63, 1208–1213 (1997).
[PubMed]

Appl. Opt. (1)

Applied Optocs (1)

L. Steffen, C. Cristoph, and E. H. K. Stelzer “Confocal theta fluorescence microscopy with annular apertures,” Applied Optocs 35,126–130 (1996).
[Crossref]

Aquat. Microb. Ecol. (3)

F. Schut, R. A. Prins, and J. C. Gottschal, “Oligotrophy and pelagic marine bacteria: facts and fiction,” Aquat. Microb. Ecol. 12, 177–202 (1997).
[Crossref]

R. T. Noble and J. A. Fuhrman, “Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,” Aquat. Microb. Ecol. 14, 113–118 (1998).
[Crossref]

L. Legendre and J. LeFevre, “Microbial food webs and the export of biogenic carbon in oceans,” Aquat. Microb. Ecol. 9, 69–77 (1995).
[Crossref]

Bioimaging (1)

F. Lanni, B. Bailey, D. L. Farkas, and D. L. Taylor “Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,” Bioimaging 1, 187–196 (1993).
[Crossref]

Deep-Sea Res. I (1)

A. L. Alldredge, U. Passow, and B. E. Logan, “The abundance and significance of a class of large, transparent organic particles in the ocean,” Deep-Sea Res. I 40, 1131–1140 (1993).
[Crossref]

J. Opt. Soc. Am.-A (1)

Steffen Lindek and Ernst H. K. Stelzer “Optical transfer functions for confocal theta fluorescence microscopy,” J. Opt. Soc. Am.-A 13, 479–482 (1996).
[Crossref]

Journal of Cell Biology (1)

J.G. White, W.B. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” Journal of Cell Biology 105, 41–48. (1987).
[Crossref] [PubMed]

Journal of microscopy, (1)

G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen, and A. Nanninga “Three-dimensional imaging in fluorescence by confocal scanning microscopy,” Journal of microscopy, 153, 151–159, (1989).
[Crossref]

Mar. Ecol. Prog. Ser. (2)

A. Heissenberger, G. G. Leppard, and G. J. Herndl, “Ultrastructure of marine snow. II. Microbiological considerations,” Mar. Ecol. Prog. Ser. 135, 299–308 (1996).
[Crossref]

L. M. Proctor and J. A. Fuhrman, “Roles of viral infection in organic particle flux,”Mar. Ecol. Prog. Ser. 69,133–142 (1991).
[Crossref]

Mar. Ecolo. Prog. Ser. (1)

A. Shibata, K. Kogure, I. Koike, and K. Ohwada, “Formation of submicron colloidal particles from maring bacteria by viral infection,” Mar. Ecolo. Prog. Ser.303–307 (1997).
[Crossref]

Marine Ecology Progress Series, (1)

P. J. S. Franks and J. S. Jaffe, “Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer, : OSST,” Marine Ecology Progress Series, 220, (2001).
[Crossref]

Meas. Sci. Technol. (1)

C.D. Meinhart, S.T. Wereley, and M.H.B. Gray “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol. 11, 809–814 (2000)
[Crossref]

Microb. Ecol. (1)

F. Azam, D. C. Smith, G. F. Steward, and Å. Hagström, “Bacteria-organic matter coupling and its significance for oceanic carbon cycling,” Microb. Ecol. 28, 167–179 (1993).
[Crossref]

Nature (3)

I. Koike, H. Shigemitsu, T. Kazuki, and K. Kogure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[Crossref]

D. C. Smith, M. Simon, A. L. Alldredge, and F. Azam, “Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,” Nature 359, 139–142 (1992).
[Crossref]

B. Bailey, D. L. Farkas, D. L. Taylor, and F. Lanni “Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,” Nature 366, 44–48 (1993)
[Crossref] [PubMed]

Oceanography, (1)

J. S. Jaffe, P. J. S. Franks, and A. W. Leising. “Simultaneous imaging of phytoplankton and zooplankton distributions,” Oceanography, 11, 24 – 29 (1998).
[Crossref]

Optics Communications (1)

E. H. K. Stelzer and S. Lindek “Fundamental reduction of the observation volume in far-field light micros copy by detection orthogonal to the illumination axis: confocal theta microscopy,” Optics Communications 111, 536–547 (1994)
[Crossref]

Proceedings of SPIE (1)

J. A. Conchello, C. M. Cogswell, A. G. Tescher, and T. Wilson, “Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,” Proceedings of SPIE Volume  3919 (2000).

Prog. Oceanogr. (1)

A. L. Alldredge and M. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[Crossref]

Science (3)

N. Blackburn, T. Fenchel, and F. Mitchell, “Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,” Science 282, 2254–2256 (1998).
[Crossref] [PubMed]

A. L. Alldredge and Y. Cohen, “Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,”Science 235,687–691 (1987).
[Crossref]

F. Azam, “Microbial control of oceanic carbon flux: The plot thickens,” Science 280, 694–696 (1998).
[Crossref]

Other (7)

F. Azam and D. C. Smith, “Bacterial influence on the variability in the ocean’s biogeochemical state: A mechanistic view,” In: S. Demers (ed.) Particle analysis in oceanography. (Springer-Verlag,213–2361991).
[Crossref]

T. Fenchel, G. M. King, and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling. 2nd Edition. (Academic Press, New York1998).

E. Gratton, “Laser sources for confocal and two-photon microscopy,” Chapter in Confocal and Two-Photon Microscopy: Foundations, Applications and Advances. Ed., Alberto Diaspro, (Wiley & Sons, Inc.2000).

S. Inoué and K. Spring, “Video Microscopy: The Fundamentals,” (New York: Plenum,1997).

F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal, and J. K. Aggarwal, IEEE “Transactions on Acoustics, Speech and Signal Processing,”  361067–1074 (1988).

T. Wilson and C. Sheppard. “Theory and practice of scanning optical microscopy,” (Academic Press, London,1984).

D. Hanselman and B. Littlefield, Mastering MATLAB: A Comprehensive Tutorial and Reference, (Prentice-Hall, Inc.,1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1:
Figure 1:

Thin light sheet microscopy (TLSM), schematic diagram.

Figure 2:
Figure 2:

Thin light sheet - beam characteristics.

Figure 3
Figure 3

(a): Sample illuminated with the thin light sheet illumination. (b) Same sample with a broad beam illumination. Marine bacterial isolates in 0.22 μm filtered seawater, stained. Particle size cannot be scaled due to sensor blooming. Particles appear about 1.7 times larger than their actual size.

Figure 4:
Figure 4:

Different size organisms imaged with the TLSM of total seawater. Particles appear about 1.7 times larger than their actual size.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ = n λ 0 N A 2 + n e NA M
d = K · λ · f #

Metrics