Abstract

We study a Mach-Zehnder nonlinear fiber interferometer for the generation of amplitude-squeezed light. Numerical simulations of experiments with microstructure fiber are performed using linearization of the quantum nonlinear Shrödinger equation. We include in our model the effect of distributed linear losses in the fiber.

© Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. De Voe, and D. F. Walls, ?Broad-band parametric deamplification of quantum noise in an optical fiber,? Phys. Rev. Lett. 57, 691 (1987).
    [CrossRef]
  2. M. Rosenbluh and R. M. Shelby, ?Squeezed optical solitons,? Phys. Rev. Lett. 66, 153 (1991).
    [CrossRef] [PubMed]
  3. A. Sizmann and G. Leuchs, ?The optical Kerr effect and quantum optics in fibers,? in Progress in Optics XXXIX, E. Wolf, ed. (Elsevier Scinece B.V., 1999).
    [CrossRef]
  4. Ch. Silberhorn , P. K. Lam, O. Wei?, F. Koenig, N. Korolkova, and G. Leuchs, ?Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fibre,? Phys. Rev. Lett. 86, 4267 (2001).
    [CrossRef] [PubMed]
  5. A. Furasawa, J.L. Soren sen ,S. L. Braun stein , C. A. Fuchs, H. J. Kimble, and E. S. Polzik, ?Unconditional quantum teleportation,? Science 282, 706 (1998); S. L. Braunstein and H. J. Kimble, ?Dense coding for continuous variables,? Phys. Rev. A 61 2302 (2000).
    [CrossRef]
  6. S. Schmitt, J. Ficker, M. Wol., F. K?onig, A. Sizmann, and G. Leuchs, ?Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,? Phys. Rev. Lett. 81, 2446 (1998).
    [CrossRef]
  7. S. Spalter, M. Burk, U Stro?ner, A. Sizmann, and G. Leuchs, ?Propagation of quantum properties of sub-picosecond solitons in a fiber,? Opt. Express 2, 77 (1998).
    [CrossRef]
  8. D. Krylov and K. Bergman, ?Amplitude-squeezed solitons from an asymmetric fiber interferometer,? Opt. Lett. 23, 1390 (1998).
    [CrossRef]
  9. D. Levandovsky, M. Vasilyev, and P. Kumar, ?Amplitude squeezing of light by means of a phasesensitive fiber parametric amplifier,? Opt. Lett. 24, 948 (1999)
    [CrossRef]
  10. M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, ?Soliton squeezing in a Mach-Zehnder fiber interferometer,? Phys. Rev. A 64, 031801(R) (2001).
    [CrossRef]
  11. M. Fiorentino, J.E. Sharping, P. Kumar, A. Porzio, and R. Windeler, ?Soliton squeezing in microstructure fiber,? submitted to Opt. Lett.
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, ?Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,? Opt. Lett. 25, 25 (2000).
    [CrossRef]
  13. X. Liu, C. Xu,W. H. Kn ox, J. K. Chan dalia, B. J. Eggelton , S. G. Kosin sky, and R. S.Windeler, ?Soliton self-phase shift in a short tapered air-silica microstructure fiber,? Opt. Lett. 26, 358 (2001).
    [CrossRef]
  14. J. E. Sharping, M. Fiorentino and P. Kumar, ?Four wave mixing in microstructure fibers,? Opt. Lett. 26, 1048 (2001).
    [CrossRef]
  15. F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, ?Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber,? Opt. Lett. 26, 1558 (2001).
    [CrossRef]
  16. H. A. Haus and Y. Lai, ?Quantum theory of soliton squeezing: a linearized approach,? J. Opt. Soc. Am. B 7, 386 (1990)
    [CrossRef]
  17. D. J. Kaup, ?Perturbationtheor y for solitons in optical fibres,? Phys. Rev. A 42, 5689 (1990).
    [CrossRef] [PubMed]
  18. D. Levandovsky, M. Vasilyev, and P. Kumar, ?Soliton squeezing in a highly transmissive loop mirror,? Opt. Lett. 24, 89 (1999).
    [CrossRef]
  19. C. R. Doerr, M. Shirasaki, and F. I. Khatri, ?Simulation of pulsed squeezing in optical fiber with chromatic dispersion,? J. Opt. Soc. Am. B, 11, 142 (1994).
    [CrossRef]
  20. M. Shirasaki and H. A. Haus, ?Squeezing of pulses in a nonlinear interferometer,? J. Opt. Soc. Am. B 7, 30 (1990)
    [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  22. C. Caves, ?Quantum limits on noise in linear amplifiers,? Phys. Rev. D 26, 1817 (1982).
    [CrossRef]
  23. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).
  24. P. Kumar and J. Shapiro, ?Squeezed-state generation via forward degenerate four-wave mixing,? Phys. Rev. A 30, 1568 (1984).
    [CrossRef]
  25. J. H. Shapiro and L. Boivin, ?Raman-noise limit on squeezing in continuous-wave four-wave mixing,? Opt. Lett. 20, 925 (1990).
    [CrossRef]
  26. M. J. Werner, ?Quantum soliton generation using an interferometer,? Phys. Rev. Lett. 81, 4132 (1998).
    [CrossRef]
  27. K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, ?Squeezing in a fiber interferometer with a gigahertz pump,? Opt. Lett. 19, 290 (1994).
    [CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett

M. Fiorentino, J.E. Sharping, P. Kumar, A. Porzio, and R. Windeler, ?Soliton squeezing in microstructure fiber,? submitted to Opt. Lett.

K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, ?Squeezing in a fiber interferometer with a gigahertz pump,? Opt. Lett. 19, 290 (1994).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

M. Fiorentino, J. E. Sharping, P. Kumar, D. Levandovsky, and M. Vasilyev, ?Soliton squeezing in a Mach-Zehnder fiber interferometer,? Phys. Rev. A 64, 031801(R) (2001).
[CrossRef]

D. J. Kaup, ?Perturbationtheor y for solitons in optical fibres,? Phys. Rev. A 42, 5689 (1990).
[CrossRef] [PubMed]

P. Kumar and J. Shapiro, ?Squeezed-state generation via forward degenerate four-wave mixing,? Phys. Rev. A 30, 1568 (1984).
[CrossRef]

Phys. Rev. D

C. Caves, ?Quantum limits on noise in linear amplifiers,? Phys. Rev. D 26, 1817 (1982).
[CrossRef]

Phys. Rev. Lett.

M. J. Werner, ?Quantum soliton generation using an interferometer,? Phys. Rev. Lett. 81, 4132 (1998).
[CrossRef]

S. Schmitt, J. Ficker, M. Wol., F. K?onig, A. Sizmann, and G. Leuchs, ?Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,? Phys. Rev. Lett. 81, 2446 (1998).
[CrossRef]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. De Voe, and D. F. Walls, ?Broad-band parametric deamplification of quantum noise in an optical fiber,? Phys. Rev. Lett. 57, 691 (1987).
[CrossRef]

M. Rosenbluh and R. M. Shelby, ?Squeezed optical solitons,? Phys. Rev. Lett. 66, 153 (1991).
[CrossRef] [PubMed]

Ch. Silberhorn , P. K. Lam, O. Wei?, F. Koenig, N. Korolkova, and G. Leuchs, ?Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fibre,? Phys. Rev. Lett. 86, 4267 (2001).
[CrossRef] [PubMed]

Progress in Optics

A. Sizmann and G. Leuchs, ?The optical Kerr effect and quantum optics in fibers,? in Progress in Optics XXXIX, E. Wolf, ed. (Elsevier Scinece B.V., 1999).
[CrossRef]

Science

A. Furasawa, J.L. Soren sen ,S. L. Braun stein , C. A. Fuchs, H. J. Kimble, and E. S. Polzik, ?Unconditional quantum teleportation,? Science 282, 706 (1998); S. L. Braunstein and H. J. Kimble, ?Dense coding for continuous variables,? Phys. Rev. A 61 2302 (2000).
[CrossRef]

Other

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic model of the nonlinear fiber Mach-Zehnder interferometer. BS, beamsplitter; SA, spectrum analyzer.

Fig. 2.
Fig. 2.

(a) Schematic model of symmetric split-step Fourier propagation in a fiber. The fiber is divided in a large number of segments of length Δz. The dispersionis calculated at the midplane of each segment (here indicated with a dashed line). (b) Inclusion of loss is obtained by inserting beamsplitters of reflectivity Γ Δz between segments. The beamsplitters couple in modes νj(k) that are assumed to be in vacuum state.

Fig. 3.
Fig. 3.

Plot of QNR versus fiber transmittivity in case of distributed losses (continuous curve) and lumped losses (dashed curve). Propagation distance in the fiber is 4.3 soliton periods, T 1 = 0.1, the strong-pulse arm is injected with a fundamental soliton, and T 2 = 0.035.

Fig. 4.
Fig. 4.

A schematic of our experimental setup. The shaded area highlights the components that form the Mach-Zehnder polarization interferometer. OPO, optical-parametric oscillator; HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarizing beamsplitter; M, mirror.

Fig. 5.
Fig. 5.

Plots of QNR corrected for detection losses in the PM-fiber (a) and MF (b) as a function of the energy of the strong pulse expressed in terms of squared soliton-number N 2. The experimental data (diamonds) are compared with numerical simulations (circles). (a) PM fiber, L = 4.3 soliton periods, T 1 = 0.1, T 2 = 0.032; (b) MF, L = 5.9 soliton periods, T 1 = 0.095, T 2 = 0.037, Γ = 0.01. The numerical simulation in (b) is limited to the maximum value of N 2 by the computational resources at our disposal.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

U ̂ z = i U ̂ U ̂ U ̂ + i 2 2 U ̂ t 2 ,
U ̂ = U ¯ + u ̂ ,
U ¯ z = i U ¯ 2 U ¯ + i 2 2 U ¯ t 2 ,
u ̂ z = 2 i U ¯ 2 u ̂ + i U ¯ 2 u ̂ + i 2 2 u ̂ t 2 .
u ̂ ( z , t ) j = 1 M u ̂ j ( z ) M ,
u ̂ j ( z ) m = 1 M ( μ jm ( z ) u ̂ m ( 0 ) + ν jm * ( z ) u ̂ m ( 0 ) ) ,
μ jm z = 2 i U ¯ 2 μ jm + iU ¯ 2 ν jm i 2 FFT 1 [ ω 2 FFT [ μ jm ] ] ,
ν jm z = 2 i U ¯ 2 ν jm + iU ¯ 2 μ jm i 2 FFT 1 [ ω 2 FFT [ ν jm ] ] ,
U ¯ = R 2 U ¯ + T 2 U ¯ e ,
u ̂ = R 2 u ̂ + T 2 u ̂ e .
Φ 0 j , m = 1 M ( U ¯ j U ̂ j U ¯ 2 ) ( U ̂ m U ̂ m U ¯ 2 )
R 2 m = 1 M j = 1 M U ¯ j ( μ jm e i θ j + ν jm e i θ j ) 2
+ T 2 m = 1 M j = 1 M U ¯ j ( μ jm e i θ j + ν jm e i θ j ) 2 ,
QNR = Φ 0 ( μ , μ , ν , ν ) Φ 0 ( μ jm = μ jm = δ jm , ν jm = ν jm = 0 ) .
U ¯ z = ( i U ¯ 2 Γ ) U ¯ + i 2 2 U ¯ t 2 ,
u ̂ j ( z ) m = 1 M ( μ jm ( L ) ( z ) u ̂ m ( 0 ) + ν jm ( L ) * ( z ) u ̂ m ( 0 ) ) + Γ Δ z k = 1 P ( m = 1 M ( ξ jm ( k ) v ̂ m ( k ) + η jm ( k ) * v ̂ m ( k ) ) ) ,
Φ 0 R 2 m = 1 M j = 1 M U ¯ j ( μ jm e i θ j + ν jm e i θ j ) 2
+ R 2 ( Γ Δ z ) 2 k = 1 P m = 1 M j = 1 M U ¯ j ( ξ jm e i θ j + η jm e i θ j ) 2
+ T 2 m = 1 M j = 1 M U ¯ j ( μ jm e i θ j + ν jm e i θ j ) 2
+ T 2 ( Γ Δ z ) 2 k = 1 P m = 1 M j = 1 M U ¯ j ( ξ jm e i θ j + η jm e i θ j ) 2 ,

Metrics