Abstract

A theoretical method and an original numerical procedure to calculate the light spectra generated by optical parametric fluorescence (OPF) in a periodically polled medium is presented. This efficient procedure allows us to precisely study the generation in a periodically poled lithium niobate crystal. As an example, the evolution of the OPF spectra as a function of the pump frequency is presented as an animation. Furthermore, we show that OPF spectra can be generated when the pump frequency goes below the degeneracy.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.A. Armstrong, N. Blombergen, J. Ducuing, and P.S. Pershan, �??Interaction between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918 - 1937 (1962).
    [CrossRef]
  2. M.M. Fejer, �??Nonlinear frequency conversion : materials requirement, engineerd materials, and quasi-phasematching�??, in Beam shaping and control with nonlinear optics, edited by F. Kajzar and R. Reinisch, Plenum Press, 1997, p.375-406.
  3. P.Baldi, et al, �??Modelling and experimental observation of parametric fluorescence in periodically poled lithiulm niobate waveguides,�?? IEEE J. Quantum Electron. 31, 997-1008 (1995).
    [CrossRef]
  4. A.S. Chirkin, V.V. Volkov, G.D. Laptev, E. Yu. Morozov, �??Consecutive three-wave interactions in nonlinear optics of periodically inhomogeneous media,�?? Quantum Electron. 30, 847-858 (2000).
    [CrossRef]
  5. A. Rauber, �??Chemistry and physics of lithium niobate�?? in Current topics in Materials Science, edited by E.L.Kaldis, North - Holland Publishing Company, 1978, p.529.
  6. S. Tanzilli, et al, �??PPLN waveguide for quantum communication,�?? Eur. Phys. J. D 18, 155-160 (2002) and reference 23 therein.
    [CrossRef]

Eur. Phys. J. D (1)

S. Tanzilli, et al, �??PPLN waveguide for quantum communication,�?? Eur. Phys. J. D 18, 155-160 (2002) and reference 23 therein.
[CrossRef]

IEEE J. Quantum Electron. (1)

P.Baldi, et al, �??Modelling and experimental observation of parametric fluorescence in periodically poled lithiulm niobate waveguides,�?? IEEE J. Quantum Electron. 31, 997-1008 (1995).
[CrossRef]

Phys. Rev. (1)

J.A. Armstrong, N. Blombergen, J. Ducuing, and P.S. Pershan, �??Interaction between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918 - 1937 (1962).
[CrossRef]

Quantum Electron. (1)

A.S. Chirkin, V.V. Volkov, G.D. Laptev, E. Yu. Morozov, �??Consecutive three-wave interactions in nonlinear optics of periodically inhomogeneous media,�?? Quantum Electron. 30, 847-858 (2000).
[CrossRef]

Other (2)

A. Rauber, �??Chemistry and physics of lithium niobate�?? in Current topics in Materials Science, edited by E.L.Kaldis, North - Holland Publishing Company, 1978, p.529.

M.M. Fejer, �??Nonlinear frequency conversion : materials requirement, engineerd materials, and quasi-phasematching�??, in Beam shaping and control with nonlinear optics, edited by F. Kajzar and R. Reinisch, Plenum Press, 1997, p.375-406.

Supplementary Material (1)

» Media 1: AVI (1506 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

OPF amplification spectrum η = Pout /(ħωp ∆ω) - 1 at the pump frequency of 2.68×1015 rad·s-1 (703.3 nm). The animation (1.46 MB) is the evolution of the OPF amplification spectrum when the pump frequency changes. Each frame corresponds to a a particular pump frequency. [Media 1]

Fig. 2.
Fig. 2.

Tuning curves for the main peak (thick solid curve) and minimums (dashed curves) and secondary maximums (thin solid curves). Crosses represent maximums found in the spectra for different pump frequencies and circles represent minimums.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

z A p = g ( z ) ( ω p n ( ω ) / ωn ( ω p ) ) κ A p * exp ( i Δ β p z ) ,
z A p = g ( z ) ( ω p n ( ω ) / ωn ( ω p ) ) κ A p * exp ( i Δ β p z ) ,
Δ β p = Δ β p = k ( 2 ω ) k ( ω p ) k ( ω p ) = 2 ωn ( 2 ω ) c ω p n ( ω p ) c ω p n ( ω p ) c ,
A p ( z = 0 ) = A p , 0 A p ( z = 0 ) = A p , 0
A p = B p ω p ω n ( ω ) n ( ω p ) exp ( i Δ β p z 2 ) , A p = B p ω p ω n ( ω ) n ( ω p ) exp ( i Δ β p z 2 ) ,
z B p * = i Δ β p B p * / 2 + g ( z ) K * B p ,
z B p = i Δ β p B p / 2 + g ( z ) K B p * ,
z B p * = g ( z ) K * B p + i Δ β p B p * / 2 ,
z B p = g ( z ) K B p * i Δ β p B p / 2 ,
z C = MC ,
C c 1 c 2 c 3 c 4 = B p * B p B p * B p , C 0 = B p , 0 * B p , 0 B p , 0 * B p , 0 ,
M = i Δ β p / 2 0 0 g ( z ) K * 0 i Δ β p / 2 g ( z ) K 0 0 g ( z ) K * i Δ β p / 2 0 g ( z ) K 0 0 i Δ β p / 2 .
M ± = i Δ β p / 2 0 0 ± K * 0 i Δ β p / 2 ± K 0 0 ± K * i Δ β p / 2 0 ± K 0 0 i Δ β p / 2
C ( z ) = exp ( M + z ) C 0 ,
C ( Λ / 2 ) = exp ( M Λ / 2 ) C ( Λ / 2 ) = exp ( M Λ / 2 ) exp ( M + Λ / 2 ) C 0 .
C = ( exp ( M Λ / 2 ) exp ( M + Λ / 2 ) ) L C 0 = Q C 0 ,
B d * B d = c 4 + c 4 = C * T 4,4 C ,
B d * B d = ( C 0 * Q * ) T 4,4 ( Q C 0 ) = C 0 * ( Q * T 4,4 Q ) C 0 = C 0 * S C 0 ,
C 0 * S C 0 = p = 1 , r = 1 4,4 s p , r C 0,1 * C 0,1 =
( s 1,1 + s 2,2 ) ω ω p · n ( ω p ) n ( ω ) A 0 , p * A 0 , p + ( s 3,3 + s 4,4 ) ω ω p · n ( ω p ) n ( ω ) A 0 , p * A 0 , p ,
B d * B d = C 0 * S C 0 = ( s 1,1 + s 2,2 ) n ( ω p ) n ( ω ) ħ ω Δ ω + ( s 3,3 + s 4,4 ) n ( ω p ) n ( ω ) ħω Δ ω .
n e 2 = 4.5567 + 2.605 · 10 7 τ 2 + 0.970 · 10 5 + 2.70 · 10 2 τ 2 λ 2 ( 2.01 · 10 2 + 5.4 · 10 5 τ 2 ) 2 2.24 · 10 8 λ 2 ,

Metrics