Abstract

In a novel application of light torques, we manipulate and control the rotation of nanorods. We apply light torques to 250 nm diameter glass nanorods in a single-beam optical trap. Light-torque operated nanomotors whir at moderate speeds that depend on several factors, including the magnitude of the light torque, the viscosity of the surrounding medium, and the rotation rate of the electric field vector of the linearly polarized trapping light. Two new modes of behavior - rocking motion and saltatory motion -are also described and explained.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, �??Optical trapping and manipulation of neutral particles using lasers, �?? Proc. Nat. Acad. Sci. 94, 4853 (1997).
    [CrossRef] [PubMed]
  2. L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, �??Controlled rotation of optically trapped microscopic particles, �?? Science 292, 912 (2001).
    [CrossRef] [PubMed]
  3. M.P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, , �??Creation and manipulation of three-dimensional optically trapped structures, �?? Science 296, 1101 (2002).
    [CrossRef] [PubMed]
  4. R.C. Gauthier, M. Ashman, and C.P. Grover, �??Controlled rotation of optically trapped microscopic particles, �?? Appl. Opt. 38, 4861 (1999).
    [CrossRef]
  5. A.T. O�??Neil, M.J. Padgett, �??Rotational control within optical tweezers by use of a rotating aperture, �?? Opt. Lett. 27, 743-745 (2002).
    [CrossRef]
  6. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348 (1998).
    [CrossRef]
  7. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, �??Optically induced rotation of anisotropic microobjects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209 (1994).
    [CrossRef]
  8. T.B. Jones, Electromechanics of Particles, (Cambridge University Press, New York, 1995).
    [CrossRef]
  9. . Z.-P. Luo, Y.-L. Sun, and K.-N. An, �??An optical spin micromotor, �?? Appl. Phys. Lett. 76, 1779 (2000).
    [CrossRef]
  10. P. Galadja and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249 (2001).
    [CrossRef]
  11. A. Ashkin and J.M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517 (1987).
    [CrossRef] [PubMed]
  12. K. Svoboda and S. Block, �??Optical trapping of metallic Rayleigh particles,�?? Opt. Lett. 19, 930 (1994).
    [CrossRef] [PubMed]
  13. M.M. Tirado and J.G. de la Torre, �??Rotational dynamics of rigid, symmetric top macromolecules. Application to circular cylinders,�?? J. Chem. Phys. 73, 1986 (1980).
    [CrossRef]
  14. E. M. Purcell, �??Life at low Reynolds number,�?? Am. J. Phys. 45, 3 (1977).
    [CrossRef]
  15. T.R. Strick, V. Croquette, and D. Bensimon, �??Single-molecule analysis of DNA uncoiling by a type II topoisomerase,�?? Nature 404, 901 (2000).
    [CrossRef] [PubMed]
  16. R.K. Soong , G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno, �??Powering an inorganic nanodevice with a biomolecular motor,�?? Science 290, 1555 (2000).
    [CrossRef] [PubMed]
  17. K. Kinosita, R.Yasuda, H. Noji, and K. Adachi, �??A rotary molecular motor that can work at near 100% efficiency," Phil. Trans. R. Soc. Lond. B 355, 473 (2000).
    [CrossRef]

Am. J. Phys. (1)

E. M. Purcell, �??Life at low Reynolds number,�?? Am. J. Phys. 45, 3 (1977).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, �??Optically induced rotation of anisotropic microobjects fabricated by surface micromachining,�?? Appl. Phys. Lett. 64, 2209 (1994).
[CrossRef]

. Z.-P. Luo, Y.-L. Sun, and K.-N. An, �??An optical spin micromotor, �?? Appl. Phys. Lett. 76, 1779 (2000).
[CrossRef]

P. Galadja and P. Ormos, �??Complex micromachines produced and driven by light,�?? Appl. Phys. Lett. 78, 249 (2001).
[CrossRef]

J. Chem. Phys. (1)

M.M. Tirado and J.G. de la Torre, �??Rotational dynamics of rigid, symmetric top macromolecules. Application to circular cylinders,�?? J. Chem. Phys. 73, 1986 (1980).
[CrossRef]

Nature (2)

T.R. Strick, V. Croquette, and D. Bensimon, �??Single-molecule analysis of DNA uncoiling by a type II topoisomerase,�?? Nature 404, 901 (2000).
[CrossRef] [PubMed]

M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, �??Optical alignment and spinning of laser-trapped microscopic particles,�?? Nature 394, 348 (1998).
[CrossRef]

Opt. Lett. (2)

Phil. Trans. R. Soc. Lond. B (1)

K. Kinosita, R.Yasuda, H. Noji, and K. Adachi, �??A rotary molecular motor that can work at near 100% efficiency," Phil. Trans. R. Soc. Lond. B 355, 473 (2000).
[CrossRef]

Proc. Nat. Acad. Sci. (1)

A. Ashkin, �??Optical trapping and manipulation of neutral particles using lasers, �?? Proc. Nat. Acad. Sci. 94, 4853 (1997).
[CrossRef] [PubMed]

Science (4)

L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, and K. Dholakia, �??Controlled rotation of optically trapped microscopic particles, �?? Science 292, 912 (2001).
[CrossRef] [PubMed]

M.P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, , �??Creation and manipulation of three-dimensional optically trapped structures, �?? Science 296, 1101 (2002).
[CrossRef] [PubMed]

A. Ashkin and J.M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517 (1987).
[CrossRef] [PubMed]

R.K. Soong , G.D. Bachand, H.P. Neves, A.G. Olkhovets, H.G. Craighead, and C.D. Montemagno, �??Powering an inorganic nanodevice with a biomolecular motor,�?? Science 290, 1555 (2000).
[CrossRef] [PubMed]

Other (1)

T.B. Jones, Electromechanics of Particles, (Cambridge University Press, New York, 1995).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (1278 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A sketch of the light torque geometry. Here the induced dipole p will move to align with the electric field E to minimize energy. Hence, a torque τ = p × E exists about an axis out of the plane of the paper.

Fig. 2.
Fig. 2.

Image sequences showing the three different types of motion. In each frame a + symbol labels the orientation of the rod and the scale bar is 3 μm. (a) Discrete nanorod manipulation: the light polarization is discretely oriented by a manual rotation of the polarization optic at the following angles with respect to a horizontal line: (1) 45, (2) 90, (3) 135, (4) 180. (b) Nanomotor behavior: the rod rotates in response to a rotating polarization light torque. (c) Nanorocker behavior: here the rod rocks in response to a rotating polarization light torque. In frame # 9, the nanorod has completed one full period of rocking.

Fig. 3.
Fig. 3.

A plot of the angular range ∆θ versus laser polarization rotation frequency Ω for a single nanorod undergoing rocking motion. Inset: A plot of the angle versus time for the glass nanorod in Fig. 2(c) - operated in nanorocker mode.

Fig. 4.
Fig. 4.

(1.28 Mb) Polarized-light torque nanomotor: a glass rod in an optical trap rotating due to the torque applied by rotating the polarization of the trapping light. Note the interrupted, or saltatory, motion of the nanorod. The glass rod is 2.5 μm long and 260 nm in diameter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I θ ̈ = U sin [ 2 ( Ω t θ ) ] γ θ ˙
θ ˙ = U γ sin [ 2 ( Ω t θ ) ] .
γ πη L 3 3 [ ln ( L / 2 a ) 0.66 ] .

Metrics