Abstract

We fabricated the Fresnel zone plate by embedding voids in silica glass. We investigated the focusing properties by launching a He-Ne laser beam into the zone plate. The spot size of the primary focal point was 7.0 μm and agreed with the theoretical value of 6.1 μm. The diffraction efficiency was 2.0 %. This technique enables us to make alignment free micro-scale lenses inside bulk materials.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, �??Writing waveguides in glass with a femtosecond laser,�?? Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  3. K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, �??In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,�?? Opt. Lett. 26, 19-21 (2001).
    [CrossRef]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, �??Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,�?? Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  5. S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, �??Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser laser,�?? Opt. Commun. 168, 287-295 (1999).
    [CrossRef]
  6. Y. Sikorski, A. A. Said, P. Bado, M. Maynard, C. Florea, and K. A. Winick, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 226-227 (2000).
    [CrossRef]
  7. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. Ruske, B. N. Chichkov, and A. Tuennermann, �??Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,�?? Opt. Express 7, 41-49 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-2-41</a>
    [CrossRef] [PubMed]
  8. M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, �??Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,�?? Appl. Opt. 41, 4360-4364 (2002).
    [CrossRef] [PubMed]
  9. D. Homoelle, W. Wielandy, A. L. Gaeta, E. F. Borrelli, and C. Smith, �??Infrared photosensitivity in silica glasses exposed to femtosecondlaser pulses,�?? Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  10. A. M. Streltsov and N. F. Borrelli, �??Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,�?? Opt. Lett. 26, 42-44 (2001).
    [CrossRef]
  11. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  12. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, �??Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,�?? Opt. Express 10, 645-652 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-645</a>
    [CrossRef] [PubMed]
  13. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, �??Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,�?? Opt. Commun. 171, 279-284 (1999).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, �??Photowritten optical waveguides in various glasses with ultrashort pulse laser,�?? Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, M. Maynard, C. Florea, and K. A. Winick, �??Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,�?? Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Opt. Commun. (2)

L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, �??Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,�?? Opt. Commun. 171, 279-284 (1999).
[CrossRef]

S. H. Cho, H. Kumagai, K. Midorikawa, and M. Obara, �??Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser laser,�?? Opt. Commun. 168, 287-295 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig 1.
Fig 1.

Schematic of the fabrication of Fresnel zone plate. We constructed the zone plate that passes only the odd zones and obstructs the even zones. Even zones are fabricated by embedding the array of the voids with steps of 1 μm.

Fig. 2.
Fig. 2.

Schematic of optical setup for fabrication of Fresnel lens by femtosecond laser pulses. ND, DM, and OB denote neutral density filter, dichroic mirror, and objective lens, respectively. L1, L2, and L3 indicate lenses. PC denotes personal computer. DM reflects the laser pulses at the wavelength of 800 nm.

Fig. 3.
Fig. 3.

Optical image of the fabricated Fresnel zone plate by embedding the two-dimensional array of voids. The image was observed under illumination by halogen lamp.

Fig. 4
Fig. 4

Magnified image of a part of the zone plate obtained by a 50× objective.

Fig.5:
Fig.5:

Intensity distribution in the primary focal point when a cw-He-Ne laser beam at the wavelength of 632.8 nm transmitted through the zone plate. The spot size was 7.0 μm and agree well with the theoretical value of 6.1 μm. The diffraction efficiency was 2 %.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f 1 = s 1 2 / λ .
R = 1.28 × Δ s N ,
Δ s N = 0.5 × [ ( λ f 1 ) 2 N 1 ] 1 / 2 .

Metrics