Abstract

We demonstrate the principle of cavity enhanced absorption with femtosecond modelocked lasers. The wide spectral coverage allowed by these sources makes this a promising high–sensitivity linear absorption technique. The uniformity of the modelocked frequency comb is the feature allowing effective injection of a high finesse cavity. The smooth and stable laser spectral profile guarantees a good background for the intracavity sample absorption spectrum, recorded by a spectrograph and a linear detector array. With a modelocked Ti:Sa laser and a cavity of finesse F ≃420 (F/π is the enhancement factor) we obtain a 4 nm section of a weak overtone band in 40 ms with 0.2cm-1resolution, and a detection limit of 2 × 10-7/cm/√Hz.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, �??Accurate measurement of large optical frequency differences with a modelocked laser,�?? Opt. Lett. 24, 881�??883 (1999).
    [CrossRef]
  2. R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, �??Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,�?? IEEE J. Quantum Electron. 37, 1493�??1500 (2001).
    [CrossRef]
  3. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, �??Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,�?? Phys. Rev. Lett. 82, 3568�??3571 (1998).
    [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi., �??Carrier-envelope phase control of femtosecond mode�??locked lasers and direct optical frequency synthesis,�?? Science 288, 635�??639 (2000).
    [CrossRef] [PubMed]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102�??5105 (2000).
    [CrossRef] [PubMed]
  6. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hansch, �??Phase coherent vacuum�??ultraviolet to radio frequency comparison with a modelocked laser,�?? Phys. Rev. Lett. 84, 3232�??3235 (2000).
    [CrossRef] [PubMed]
  7. R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T.W. Hansch, J. V. Zanthier, H.Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, �??Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,�?? Appl. Phys. B 73, 269�??271 (2001).
    [CrossRef]
  8. A. Kastler, �??Atomes a l�??interieur d�??un interferometre Perot�??Fabry,�?? Appl. Opt. 1, 17�??24 (1962).
    [CrossRef]
  9. K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, �??Highly sensitive detection of molecular absorption using a high finesse optical cavity,�?? Opt. Commun. 107, 369�??372 (1994).
    [CrossRef]
  10. J. Ye, L. Ma, and J. Hall, �??Cavity�??enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,�?? Proc. SPIE 3270, 85�??96 (1998).
    [CrossRef]
  11. R. Engeln, G. Berden, R. Peeters, and G. Meijer, �??Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,�?? Rev. Sci. Instrum. 69, 3763�??3769 (1998).
    [CrossRef]
  12. J. B. Paul, L. Lapson, and J. G. Anderson, �??Ultrasensitive absorption spectroscopy with a high�??finesse optical cavity and off�??axis alignment,�?? Appl. Opt. 40, 4904�??4910 (2001).
    [CrossRef]
  13. A. I. Ferguson and R. A. Taylor Opt. Commun. 41, 271 (1982).
    [CrossRef]
  14. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, �??CW�??cavity ring down spectroscopy,�?? Chem. Phys. Lett. 264, 316�??322 (1997).
    [CrossRef]
  15. A. Campargue, F. Stoeckel, and M. Chenevier, �??High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,�?? Spectrochimica Acta Rev. 13, 69�??88 (1990).
  16. D. Romanini, �??Cavity ring down spectroscopy versus intra cavity laser absorption spectroscopy,�?? in Cavity�??Ringdown Spectroscopy �?? A New Technique for Trace Absorption Measurements (K. W. Busch and M. A. Busch, eds.), (Washington, DC, American Chemical Society, 1998).
  17. B. C. Smith and J. S. Winn, �??The overtone dynamics of acetylene above 10 000 cm-1,�?? J. Chem. Phys. 94, 4120�??4130 (1991).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T.W. Hansch, J. V. Zanthier, H.Walther, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, M. N. Skvortsov, and S. N. Bagayev, �??Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,�?? Appl. Phys. B 73, 269�??271 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, �??CW�??cavity ring down spectroscopy,�?? Chem. Phys. Lett. 264, 316�??322 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hansch, �??Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,�?? IEEE J. Quantum Electron. 37, 1493�??1500 (2001).
[CrossRef]

J. Chem. Phys. (1)

B. C. Smith and J. S. Winn, �??The overtone dynamics of acetylene above 10 000 cm-1,�?? J. Chem. Phys. 94, 4120�??4130 (1991).
[CrossRef]

Opt. Commun. (2)

A. I. Ferguson and R. A. Taylor Opt. Commun. 41, 271 (1982).
[CrossRef]

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, �??Highly sensitive detection of molecular absorption using a high finesse optical cavity,�?? Opt. Commun. 107, 369�??372 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, �??Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,�?? Phys. Rev. Lett. 82, 3568�??3571 (1998).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, �??Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,�?? Phys. Rev. Lett. 84, 5102�??5105 (2000).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hansch, �??Phase coherent vacuum�??ultraviolet to radio frequency comparison with a modelocked laser,�?? Phys. Rev. Lett. 84, 3232�??3235 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Ye, L. Ma, and J. Hall, �??Cavity�??enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,�?? Proc. SPIE 3270, 85�??96 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, �??Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,�?? Rev. Sci. Instrum. 69, 3763�??3769 (1998).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi., �??Carrier-envelope phase control of femtosecond mode�??locked lasers and direct optical frequency synthesis,�?? Science 288, 635�??639 (2000).
[CrossRef] [PubMed]

Spectrochimica Acta Rev. (1)

A. Campargue, F. Stoeckel, and M. Chenevier, �??High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,�?? Spectrochimica Acta Rev. 13, 69�??88 (1990).

Other (1)

D. Romanini, �??Cavity ring down spectroscopy versus intra cavity laser absorption spectroscopy,�?? in Cavity�??Ringdown Spectroscopy �?? A New Technique for Trace Absorption Measurements (K. W. Busch and M. A. Busch, eds.), (Washington, DC, American Chemical Society, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup: I is an optical isolator, PD are photodiodes, PH is a pinhole, L1 and L2 are lenses, M1 and M2 are cavity mirrors, and PZT is a piezoelectric actuator.

Fig. 2.
Fig. 2.

Cavity transmission as a function of displacement from “magic point”. These oscilloscope traces correspond to a piezoelectric scan of about 1 λ.

Fig. 3.
Fig. 3.

Spectra transmitted by the cavity for different displacements from magic point. Peaks correspond to groups of transmitted modes, unresolved by the spectrograph. Smaller peaks are due to excitation of transverse cavity modes.

Fig. 4.
Fig. 4.

Cavity transmission with length modulation around magic point. a) Cavity filled with acetylene, empty cavity, and laser spectrum. Intensities have been arbitrarily adjusted for clarity. b) Ratio of cavity transmission with/without acetylene over laser spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L eff = F π 120 m .
T c ( ν ) T 2 1 R 2 exp ( 2 α ( ν ) ) .

Metrics