Abstract

We demonstrate the principle of cavity enhanced absorption with femtosecond modelocked lasers. The wide spectral coverage allowed by these sources makes this a promising high–sensitivity linear absorption technique. The uniformity of the modelocked frequency comb is the feature allowing effective injection of a high finesse cavity. The smooth and stable laser spectral profile guarantees a good background for the intracavity sample absorption spectrum, recorded by a spectrograph and a linear detector array. With a modelocked Ti:Sa laser and a cavity of finesse F ≃420 (F/π is the enhancement factor) we obtain a 4 nm section of a weak overtone band in 40 ms with 0.2cm-1resolution, and a detection limit of 2 × 10-7/cm/√Hz.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a modelocked laser,” Opt. Lett.,  24, 881–883 (1999).
    [CrossRef]
  2. R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
    [CrossRef]
  3. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
    [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
    [CrossRef] [PubMed]
  5. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
    [CrossRef] [PubMed]
  6. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
    [CrossRef] [PubMed]
  7. R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
    [CrossRef]
  8. A. Kastler, “Atomes à l’intérieur d’un interféromètre Perot-Fabry,” Appl. Opt.,  1, 17–24 (1962).
    [CrossRef]
  9. K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
    [CrossRef]
  10. J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
    [CrossRef]
  11. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
    [CrossRef]
  12. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt.,  40, 4904–4910 (2001).
    [CrossRef]
  13. A. I. Ferguson and R. A. TaylorOpt. Commun., 41, 271 (1982).
    [CrossRef]
  14. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
    [CrossRef]
  15. A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).
  16. D. Romanini, “Cavity ring down spectroscopy versus intra cavity laser absorption spectroscopy,” in Cavity-Ringdown Spectroscopy – A New Technique for Trace Absorption Measurements (K. W. Busch and M. A. Busch, eds.), (Washington, DC), American Chemical Society (1998).
  17. B. C. Smith and J. S. Winn, “The overtone dynamics of acetylene above 10 000 cm-1,” J. Chem. Phys.,  94, 4120–4130 (1991).
    [CrossRef]

2001 (3)

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt.,  40, 4904–4910 (2001).
[CrossRef]

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
[CrossRef]

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

1994 (1)

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

1991 (1)

B. C. Smith and J. S. Winn, “The overtone dynamics of acetylene above 10 000 cm-1,” J. Chem. Phys.,  94, 4120–4130 (1991).
[CrossRef]

1990 (1)

A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).

1962 (1)

Anderson, J. G.

Bagayev, S. N.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Berden, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

Campargue, A.

A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).

Chenevier, M.

A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

de Labachelerie, M.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Engeln, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

Ferguson, A. I.

A. I. Ferguson and R. A. TaylorOpt. Commun., 41, 271 (1982).
[CrossRef]

Hall, J.

J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
[CrossRef]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a modelocked laser,” Opt. Lett.,  24, 881–883 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

Holzwarth, R.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a modelocked laser,” Opt. Lett.,  24, 881–883 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

Kastler, A.

Katsuda, T.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Knight, J. C.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Lapson, L.

Ma, L.

J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
[CrossRef]

Meijer, G.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Nevsky, A. Y.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Niering, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

Ohtsu, M.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Paul, J. B.

Peeters, R.

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Reichert, J.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a modelocked laser,” Opt. Lett.,  24, 881–883 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

D. Romanini, “Cavity ring down spectroscopy versus intra cavity laser absorption spectroscopy,” in Cavity-Ringdown Spectroscopy – A New Technique for Trace Absorption Measurements (K. W. Busch and M. A. Busch, eds.), (Washington, DC), American Chemical Society (1998).

Russell, P. S.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

Shelkovnikov, A.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Skvortsov, M. N.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Smith, B. C.

B. C. Smith and J. S. Winn, “The overtone dynamics of acetylene above 10 000 cm-1,” J. Chem. Phys.,  94, 4120–4130 (1991).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).

Taylor, R. A.

A. I. Ferguson and R. A. TaylorOpt. Commun., 41, 271 (1982).
[CrossRef]

Udem, T.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a modelocked laser,” Opt. Lett.,  24, 881–883 (1999).
[CrossRef]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

Wadsworth, W. J.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Walther, H.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Weitz, M.

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Winn, J. S.

B. C. Smith and J. S. Winn, “The overtone dynamics of acetylene above 10 000 cm-1,” J. Chem. Phys.,  94, 4120–4130 (1991).
[CrossRef]

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
[CrossRef]

Zanthier, J. V.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Zimmermann, M.

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

R. Holzwarth, A. Y. Nevsky, M. Zimmermann, T. Udem, T. W. Hänsch, J. V. Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. S. Russell, M. N. Skvortsov, and S. N. Bagayev, “Absolute frequency measurement of iodine lines with a femtosecond optical synthesizer,” Appl. Phys. B,  73, 269–271 (2001).
[CrossRef]

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW-cavity ring down spectroscopy,” Chem. Phys. Lett.,  264, 316–322 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a modelocked frequency comb,” IEEE J. Quantum Electron.,  37, 1493–1500 (2001).
[CrossRef]

J. Chem. Phys. (1)

B. C. Smith and J. S. Winn, “The overtone dynamics of acetylene above 10 000 cm-1,” J. Chem. Phys.,  94, 4120–4130 (1991).
[CrossRef]

Opt. Commun. (1)

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun.,  107, 369–372 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency mesurement of the Cesium D1 line with a modelocked laser,” Phys. Rev. Lett.,  82, 3568–3571 (1998).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct linkbetween microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett.,  84, 5102–5105 (2000).
[CrossRef] [PubMed]

J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser,” Phys. Rev. Lett.,  84, 3232–3235 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum.,  69, 3763–3769 (1998).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science,  288, 635–639 (2000).
[CrossRef] [PubMed]

Spectrochimica Acta Rev. (1)

A. Campargue, F. Stoeckel, and M. Chenevier, “High sensitivity intracavity laser spectroscopy: Applications to the study of overtone transitions in the visible range,” Spectrochimica Acta Rev.,  13, 69–88 (1990).

SPIE proceedings series (1)

J. Ye, L. Ma, and J. Hall, “Cavity-enhanced frequency modulation spectroscopy : Advancing optical detection sensitivity and laser frequency stabilization,” SPIE proceedings series,  3270, 85–96 (1998).
[CrossRef]

Other (2)

D. Romanini, “Cavity ring down spectroscopy versus intra cavity laser absorption spectroscopy,” in Cavity-Ringdown Spectroscopy – A New Technique for Trace Absorption Measurements (K. W. Busch and M. A. Busch, eds.), (Washington, DC), American Chemical Society (1998).

A. I. Ferguson and R. A. TaylorOpt. Commun., 41, 271 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup: I is an optical isolator, PD are photodiodes, PH is a pinhole, L1 and L2 are lenses, M1 and M2 are cavity mirrors, and PZT is a piezoelectric actuator.

Fig. 2.
Fig. 2.

Cavity transmission as a function of displacement from “magic point”. These oscilloscope traces correspond to a piezoelectric scan of about 1 λ.

Fig. 3.
Fig. 3.

Spectra transmitted by the cavity for different displacements from magic point. Peaks correspond to groups of transmitted modes, unresolved by the spectrograph. Smaller peaks are due to excitation of transverse cavity modes.

Fig. 4.
Fig. 4.

Cavity transmission with length modulation around magic point. a) Cavity filled with acetylene, empty cavity, and laser spectrum. Intensities have been arbitrarily adjusted for clarity. b) Ratio of cavity transmission with/without acetylene over laser spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L eff = F π 120 m .
T c ( ν ) T 2 1 R 2 exp ( 2 α ( ν ) ) .

Metrics