Abstract

We have demonstrated the generation of a high-energy green laser pulse using large aperture CsLiB6O10 (CLBO) crystals for the first time to our knowledge. A pulsed energy of 25 J at 532-nm was generated using the 1064-nm incident Nd:glass laser radiation with an energy of 34 J. High conversion efficiency of 74 % at intensities of only 370 MW/cm2 was obtained using a two-stage crystal architecture. This result represents the highest green pulse energy ever reported using the CLBO crystals.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. W. Koechner, Solid-State Laser Engineering 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 10.
  2. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals 2nd ed. (Springer-Verlag, Berlin, 1991), Chap. 4.
  3. A. Sullivan, J. Bonlie, D. F. Price, andW. E. White, �??1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,�?? Opt. Lett. 21, 603-605 (1996).
    [CrossRef] [PubMed]
  4. J. P. Chambaret, C. Le Blanc, G. Chériaux, P. Curley, G. Darpentigny, P. Rousseau, G. Hamoniaux, A. Antonetti, and F. Salin, �??Generation of 25-TW, 32-fs pulses at 10 Hz,�?? Opt. Lett. 21, 1921-1923 (1996).
    [CrossRef] [PubMed]
  5. K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, �??100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate,�?? Opt. Lett. 23, 1468-1470 (1998).
    [CrossRef]
  6. M. A. Rhodes, C. D. Boley, A. G. Tarditi, and B. S. Bauer, �??Plasma electrode pockels cell for ICF lasers,�?? in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell eds., Proc. SPIE 2633, 94-104 (1995).
  7. G. J. Linford, B. C. Johnson, J. S. Hildum, W. E. Martin, K. Snyder, R. D. Boyd, W. L. Smith, C. L. Vercimak, D. Eimerl, and J. T. Hunt, �??Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory,�?? Appl. Opt. 21, 3633-3643 (1982).
    [CrossRef] [PubMed]
  8. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, �??New nonlinear optical crystal: Cesium lithium borate,�?? Appl. Phys. Lett. 67, 1818-1820 (1995).
    [CrossRef]
  9. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, �??High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,�?? Opt. Lett. 21, 1348-1350 (1996).
    [CrossRef] [PubMed]
  10. Y. Mori and T. Sasaki, �??CsLiB6O10 crystal: Growth and Properties,�?? in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky and D. C. MacPherson. eds., Proc. SPIE 2700, 20-27 (1996).
    [CrossRef]
  11. Y. K. Yap, S. Haramura, A. Taguchi, Y. Mori, and T. Sasaki, �??CsLiB6O10 crystal for frequency doubling the Nd:YAG laser,�?? Opt. Commun. 145, 101-104 (1998).
    [CrossRef]
  12. Y. Mori, S. Nakajima, A. Miyamoto, M. Inagaki, and T. Sasaki, �??Generation of ultraviolet light by using new nonlinear optical crystal CsLiB6O10,�?? in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell eds., Proc. SPIE 2633, 299-307 (1995).
    [CrossRef]
  13. D. Eimerl, J. M. Auerbach, C. E. Barker, D. Milam, and P. W. Milonni, �??Multicrystal designs for efficient third-harmonic generation,�?? Opt. Lett. 22, 1208-1210 (1997).
    [CrossRef] [PubMed]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, �??Interactions between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  15. Y. K. Yap, T. Inoue, H. Sakai, Y. Kagebayashi, Y. Mori, T. Sasaki, K. Deki, and M. Horiguchi, �??Longterm operation of CsLiB6O10 at elevated crystal temperature,�?? Opt. Lett. 23, 34-36 (1998).
    [CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, and S. Nakai, �??New nonlinear optical crystal: Cesium lithium borate,�?? Appl. Phys. Lett. 67, 1818-1820 (1995).
[CrossRef]

Opt. Commun.

Y. K. Yap, S. Haramura, A. Taguchi, Y. Mori, and T. Sasaki, �??CsLiB6O10 crystal for frequency doubling the Nd:YAG laser,�?? Opt. Commun. 145, 101-104 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, �??Interactions between light waves in a nonlinear dielectric,�?? Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Proc. SPIE

Y. Mori, S. Nakajima, A. Miyamoto, M. Inagaki, and T. Sasaki, �??Generation of ultraviolet light by using new nonlinear optical crystal CsLiB6O10,�?? in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell eds., Proc. SPIE 2633, 299-307 (1995).
[CrossRef]

M. A. Rhodes, C. D. Boley, A. G. Tarditi, and B. S. Bauer, �??Plasma electrode pockels cell for ICF lasers,�?? in Solid State Lasers for Application to Inertial Confinement Fusion, M. André and H. T. Powell eds., Proc. SPIE 2633, 94-104 (1995).

Y. Mori and T. Sasaki, �??CsLiB6O10 crystal: Growth and Properties,�?? in Nonlinear Frequency Generation and Conversion, M. C. Gupta, W. J. Kozlovsky and D. C. MacPherson. eds., Proc. SPIE 2700, 20-27 (1996).
[CrossRef]

Other

W. Koechner, Solid-State Laser Engineering 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 10.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals 2nd ed. (Springer-Verlag, Berlin, 1991), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Total 532-nm second-harmonic output energy from both CLBO crystals versus the input 1064-nm fundamental laser energy. The energy obtained from each crystal is also shown.

Fig. 2.
Fig. 2.

Total 532-nm second-harmonic conversion efficiency of CLBO crystals versus the input 1064-nm fundamental laser intensity. The efficiency of each crystal is also shown.

Fig. 3.
Fig. 3.

Near-field spatial profiles of the second-harmonic beam from each crystal. The intensity distribution along the vertical and horizontal cross sections of these beams is also shown. (a) first crystal, (b) second crystal.

Metrics