Abstract

In this paper we study the dynamics of the intracavity field, carriers and lattice temperature in externally driven semiconductor microcavities. The combination/competition of the different time-scales of the dynamical variables together with diffraction and carrier/thermal diffusions are responsible for new dynamical behaviors. We report here the occurrence of a spatio-temporal instability of the Hopf type giving rise to Regenerative Oscillations and travelling patterns and cavity solitons.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical Pattern Formation,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther , Academic Press, 1998, pp. 229ߝ306, and references quoted therein.
  2. N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449ߝ450 (1988).
  3. M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
    [CrossRef] [PubMed]
  4. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623ߝ1626 (1996).
    [CrossRef] [PubMed]
  5. M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
    [CrossRef]
  6. M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Opt. Lett. 19, 518ߝ520 (1994).
    [CrossRef] [PubMed]
  7. V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
    [CrossRef]
  8. B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
    [CrossRef]
  9. S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.
  10. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
    [CrossRef]
  11. L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
    [CrossRef]
  12. E. Abraham, “Modelling of regenerative pulsations in an InSb etalon,” Opt. Comm. 61, 282ߝ286 (1987) and references quoted therein.
    [CrossRef]
  13. S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.
  14. R. Kuszelewicz et al., 2nd yearly report of the PIANOS Project (2000). I. Ganne, Ph. D. Thesis (2000).
  15. L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.
  16. L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
    [CrossRef]
  17. A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-Propelled Cavity Solitons in Semiconductor Microcavities,” submitted to Phys. Rev. E.
  18. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
    [CrossRef]

2002 (1)

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

2001 (1)

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

2000 (1)

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

1998 (2)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

1997 (1)

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
[CrossRef]

1996 (2)

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623ߝ1626 (1996).
[CrossRef] [PubMed]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
[CrossRef]

1994 (2)

M. Saffman, D. Montgomery, and D. Z. Anderson, “Collapse of a transverse-mode continuum in a self-imaging photorefractively pumped ring resonator,” Opt. Lett. 19, 518ߝ520 (1994).
[CrossRef] [PubMed]

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
[CrossRef] [PubMed]

1988 (1)

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449ߝ450 (1988).

1987 (1)

E. Abraham, “Modelling of regenerative pulsations in an InSb etalon,” Opt. Comm. 61, 282ߝ286 (1987) and references quoted therein.
[CrossRef]

Abraham, E.

E. Abraham, “Modelling of regenerative pulsations in an InSb etalon,” Opt. Comm. 61, 282ߝ286 (1987) and references quoted therein.
[CrossRef]

Ackemannand, T.

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

Anderson, D. Z.

Balle, S.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

Barland, S.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Brambilla, M.

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
[CrossRef]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.

L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical Pattern Formation,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther , Academic Press, 1998, pp. 229ߝ306, and references quoted therein.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Feldmann, M.

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

Firth, W. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623ߝ1626 (1996).
[CrossRef] [PubMed]

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-Propelled Cavity Solitons in Semiconductor Microcavities,” submitted to Phys. Rev. E.

Gatti, A.

L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical Pattern Formation,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther , Academic Press, 1998, pp. 229ߝ306, and references quoted therein.

Giudici, M.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Harkness, G. K.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Indik, R. A.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Jaeger, R.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Khodova, G. V.

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449ߝ450 (1988).

Koedl, T.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Kuszelewicz, R.

R. Kuszelewicz et al., 2nd yearly report of the PIANOS Project (2000). I. Ganne, Ph. D. Thesis (2000).

Lange, W.

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

Lefever, R.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
[CrossRef] [PubMed]

Lugiato, L. A.

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
[CrossRef]

L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical Pattern Formation,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther , Academic Press, 1998, pp. 229ߝ306, and references quoted therein.

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Maggipinto, T.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Mandel, P.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
[CrossRef] [PubMed]

McSloy, J. M.

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-Propelled Cavity Solitons in Semiconductor Microcavities,” submitted to Phys. Rev. E.

Miller, M.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Moloney, J. V.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Montgomery, D.

Ning, C. Z.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Piro, O.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

Prati, F.

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

Rosanov, N. N.

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449ߝ450 (1988).

Rossler, T.

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Saffman, M.

Schaepers, B.

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

Scroggie, A. J.

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623ߝ1626 (1996).
[CrossRef] [PubMed]

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-Propelled Cavity Solitons in Semiconductor Microcavities,” submitted to Phys. Rev. E.

Spinelli, L.

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Staliunas, K.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
[CrossRef]

Stefani, M.

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
[CrossRef]

Taranenko, V. B.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
[CrossRef]

Tarenghi, M.

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

Tissoni, G.

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Tlidi, M.

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
[CrossRef] [PubMed]

Tredicce, J.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

Tredicce, J.R.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

Weiss, C. O.

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
[CrossRef]

Eur. Phys. J. D (1)

L. Spinelli, G. Tissoni, M. Tarenghi, and M. Brambilla, “First principle theory for cavity solitons in semiconductor microresonators,” Eur. Phys. J. D 15, 257ߝ266 (2001) and references quoted therein.
[CrossRef]

Europhys. Lett. (1)

M. Brambilla, L. A. Lugiato, and M. Stefani, “Interaction and control of optical localized structures,” Europhys. Lett. 34, 109ߝ114 (1996).
[CrossRef]

Opt. Comm. (1)

E. Abraham, “Modelling of regenerative pulsations in an InSb etalon,” Opt. Comm. 61, 282ߝ286 (1987) and references quoted therein.
[CrossRef]

Opt. Lett. (1)

Opt. Spectrosc. (1)

N. N. Rosanov and G. V. Khodova, “Autosolitons in bistable interferometers,” Opt. Spectrosc. 65, 449ߝ450 (1988).

Phys. Rev. A (4)

L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L. A. Lugiato, “Spatial solitons in semiconductor microcavities,” Phys. Rev. A 58, 2542ߝ2559 (1998) and references quoted therein.
[CrossRef]

V. B. Taranenko, K. Staliunas, and C. O. Weiss, “Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator,” Phys. Rev. A 56, 1582ߝ1591 (1997).
[CrossRef]

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal effects and transverse structures in semiconductor microcavities with population inversion,” Phys. Rev. A 66, 023817 (2002).
[CrossRef]

T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, and C. Z. Ning, “Modeling the interplay of thermal effects and transverse mode behavior in native-oxide-confined vertical-cavity surface-emitting lasers,” Phys. Rev. A 58, 3279ߝ3292 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

B. Schaepers, M. Feldmann, T. Ackemannand, and W. Lange, “Interaction of Localized Structures in an Optical Pattern-Forming System,” Phys. Rev. Lett. 85, 748ߝ751 (2000).
[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized structures and localized patterns in optical bistability,” Phys. Rev. Lett. 73, 640ߝ643 (1994).
[CrossRef] [PubMed]

W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623ߝ1626 (1996).
[CrossRef] [PubMed]

Other (6)

L. A. Lugiato, M. Brambilla, and A. Gatti, “Optical Pattern Formation,” in Advances in Atomic, Molecular and Optical Physics, Vol. 40, edited by B. Bederson and H. Walther , Academic Press, 1998, pp. 229ߝ306, and references quoted therein.

S. Barland, J.R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Koedl, M. Miller, and R. Jaeger, “Cavity solitons work as pixels in semiconductors,” Nature, to appear. See also references quoted therein.

A. J. Scroggie, J. M. McSloy, and W. J. Firth, “Self-Propelled Cavity Solitons in Semiconductor Microcavities,” submitted to Phys. Rev. E.

S. Barland, O. Piro, S. Balle, M. Giudici, and J. Tredicce, “Thermo-optical pulsation in semiconductor lasers with injected signal: Relaxation oscillations, excitability, phase-locking and coherence resonance,” preprint.

R. Kuszelewicz et al., 2nd yearly report of the PIANOS Project (2000). I. Ganne, Ph. D. Thesis (2000).

L. Spinelli, G. Tissoni, L. A. Lugiato, and M. Brambilla, “Thermal instabilites in semiconductor amplifiers,” submitted to J. Mod. Opt., special issue for the Proceedings of the Physics of Quantum Electronics Conference (Snowbird USA January6ߝ10, 2002) edited by R. W. Boyd and M. O. Scully.

Supplementary Material (5)

» Media 1: MPG (1814 KB)     
» Media 2: MPG (1758 KB)     
» Media 3: MPG (1764 KB)     
» Media 4: MPG (273 KB)     
» Media 5: MPG (398 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the broad-area vertical-cavity semiconductor microresonator.

Fig. 2.
Fig. 2.

(File size 1.77 MB) Movie showing the onset of Regenerative Oscillations in the passive configuration with a gaussian input field profile: we report the field intensity transverse cross-section. Integration window is about 140 × 140 μm wide, while the evolution time is 30 μs. Temporal parameters are: κ -1 = 10 ps, γ -1 = 10ns, γth1 = 20μs. Other parameters are ∆ = -3, θ 0 = 0, α, = 5, Z ≃ 2.06 · 10-3, Σ = 80, EI = 27.

Fig. 3.
Fig. 3.

(File size 1.71 MB) Movie showing the formation of a travelling honeycomb pattern in the transverse cross-section of the field intensity (left) and temperature (right), in the case of the passive configuration: integration window is about 140 × 140 μm wide, while the evolution time is 24 μs. White corresponds to field intensity and temperature maxima. Temporal parameters are set as in Fig. 2. Other parameters are ∆ = -1, θ 0 = -6, α = 10, Z ≃ 2.06 · 10-3, Σ = 40, EI = 15.5.

Fig. 4.
Fig. 4.

(File size 1.72 MB) Movie showing the time evolution of the field intensity (solid curve) and temperature (dashed curve) profiles when a CS is excited in the 1-D case, in the active configuration. The evolution time is 6μs. Temporal parameters are: κ -1 = 10ps, γ1 = 1ns, γth1 = 1μs. Other parameters are ∆ = 3, θ 0 = -18.5, α = 5, Σ = 40, Z ≃ 1.2 · 10-4, P ≃ 8.1 · 10-8, I = 1.43, EI = 2.55.

Fig. 5.
Fig. 5.

(File size 273 KB) Movie showing the time evolution of the field intensity (left) and temperature (right) cross-sections after the switching on of a CS, in the active configuration: the integration window is about 125 × 125 μm wide, while the evolution time is 0.96 μs. White corresponds to field intensity and temperature maxima. Parameters are set as in Fig. 4.

Fig. 6.
Fig. 6.

(File size 397KB) As in Fig. 5, but with two CS.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E t = κ [ ( 1 + i θ ( T ) ) E E I i χ nl ( N , T , ω 0 ) E i 2 E ] ,
N t = γ [ N Im ( χ nl ( N , T , ω 0 ) ) E 2 I d 2 N ] ,
T t = γ th [ ( T 1 ) D T 2 T ] + γZN + γP I 2 ,
θ = θ 0 α ( T 1 ) ,

Metrics