Abstract

We demonstrate a novel buried oxide grating structure formed by selectively-oxidized AlxGa1-xAs grown on nonplanar substrates using low-pressure MOCVD for the first time. Localized aluminum content variation in AlGaAs is obtained with MOCVD growth on nonplanar substrate. Buried aluminum oxide/semiconductor distributed feedback structure is achieved with selective oxidation of these AlGaAs layers. We fabricated a resonant-cavity-enhanced photodetector with the imbedded buried-oxide structure and measured the photodetector responsivity spectrum.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. D. Choquette et al., �??Advances in selective wet oxidation of AlGaAs alloys,�?? IEEE. J. Sel. Top. Quantum Electron. 3, 916-926 (1997).
    [CrossRef]
  2. M. S. Wu, G. S. Li, W. Yuen and C. J. Chang-Hasnain, " Widely Tunable 1.5µm micromechanical optical filter using AlOx/AlGaAs DBR," Electron. Lett. 33, 1702-1703 (1997).
    [CrossRef]
  3. L. D. Westbrook, I. D. Henning, A. W. Nelson, and P. J. Fiddyment, �??Spectral properties of strongly coupled 1.5mm DFB laser diodes,�?? IEEE J. Quantum Electron. 21, 512-518 (1985).
    [CrossRef]
  4. S. Oku, T. Ishii, R. Iga, and T. Hirono, �??Fabrication and performance of AlGaAs-GaAs distributed Bragg reflector lasers and distributed feedback lasers utilizing first-order diffraction gratings formed by a periodic groove structure,�?? IEEE J. Sel. Top. Quantum Electron. 5, 682-687 (1999).
    [CrossRef]
  5. W. Pan, H. Yaguchi, K. Onabe, R. Ito, and Y. Shiraki, �??Composition profile of an AlGaAs epilayer on a Vgrooved substrate grown by low-pressure metalorganic vapor phase epitaxy,�?? Appl. Phys. Lett. 67, 959-961 (1995).
    [CrossRef]
  6. L. Hofmann, D. Rudloff, I. Rechenberg, A. Knauer, J. Christen, and M. Weyers, �??(AlGa)As composition profile analysis of trenches overgrown with MOVPE,�?? J. Crystal Growth 222, 465-470 (2001).
    [CrossRef]
  7. E. Kapon, �??Lateral pattering of quantum well heterostructures by growth on nonplanar substrates,�?? in Semiconductors and Semimetals vol. 40 Epitaxial Microstructures, A. C. Gossard, ed. (Academic Press, San Diego, Ca. 1994).
  8. R. L. Naone, E. R. Hegblom, B. J. Thibeault, and L. A. Coldren, �??Oxidation of AlGaAs layers for tapered apertures in vertical-cavity lasers,�?? Electron. Lett. 33, 300-301 (1997).
    [CrossRef]
  9. S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, �??Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion,�?? J. Lightwave Technol. 17, 1948-1955 (1999).
    [CrossRef]

Appl. Phys. Lett. (1)

W. Pan, H. Yaguchi, K. Onabe, R. Ito, and Y. Shiraki, �??Composition profile of an AlGaAs epilayer on a Vgrooved substrate grown by low-pressure metalorganic vapor phase epitaxy,�?? Appl. Phys. Lett. 67, 959-961 (1995).
[CrossRef]

Electron. Lett. (2)

M. S. Wu, G. S. Li, W. Yuen and C. J. Chang-Hasnain, " Widely Tunable 1.5µm micromechanical optical filter using AlOx/AlGaAs DBR," Electron. Lett. 33, 1702-1703 (1997).
[CrossRef]

R. L. Naone, E. R. Hegblom, B. J. Thibeault, and L. A. Coldren, �??Oxidation of AlGaAs layers for tapered apertures in vertical-cavity lasers,�?? Electron. Lett. 33, 300-301 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. Westbrook, I. D. Henning, A. W. Nelson, and P. J. Fiddyment, �??Spectral properties of strongly coupled 1.5mm DFB laser diodes,�?? IEEE J. Quantum Electron. 21, 512-518 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Oku, T. Ishii, R. Iga, and T. Hirono, �??Fabrication and performance of AlGaAs-GaAs distributed Bragg reflector lasers and distributed feedback lasers utilizing first-order diffraction gratings formed by a periodic groove structure,�?? IEEE J. Sel. Top. Quantum Electron. 5, 682-687 (1999).
[CrossRef]

IEEE. J. Sel. Top. Quantum Electron. (1)

K. D. Choquette et al., �??Advances in selective wet oxidation of AlGaAs alloys,�?? IEEE. J. Sel. Top. Quantum Electron. 3, 916-926 (1997).
[CrossRef]

J. Crystal Growth (1)

L. Hofmann, D. Rudloff, I. Rechenberg, A. Knauer, J. Christen, and M. Weyers, �??(AlGa)As composition profile analysis of trenches overgrown with MOVPE,�?? J. Crystal Growth 222, 465-470 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Other (1)

E. Kapon, �??Lateral pattering of quantum well heterostructures by growth on nonplanar substrates,�?? in Semiconductors and Semimetals vol. 40 Epitaxial Microstructures, A. C. Gossard, ed. (Academic Press, San Diego, Ca. 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM cross-sectional views of four different sample each with four pairs of GaAs/AlGaAs. Darker regions are AlGaAs layers. Samples (a) and (b) have trenches along [01-1] directions but were grown at two different temperatures, 600°C for (a) and 640°C for (b). The thickness enhancement ratios between the sidewall and the planar region for samples (a), (b) and (d) are 2.20, 1.32 and 1.17, respectively. Sample (c) shows the convergence of two sidewalls. Sample (d) has the trench aligned along [011] direction. The no-growth plane (111)B is circled in (d) too. The nominal aluminum for all these samples is 0.92.

Fig. 2.
Fig. 2.

Oxide front pattern of AlxGa1-xAs on nonplanar substrates with trenches aligned in the [01-1] direction. (a) A schematic shows the nonplanar substrate . (b) Oxide front pattern bright field image. (c) Oxide front pattern top view from the SEM with the backscattered detector.

Fig. 3.
Fig. 3.

(a) Oxidation front shows saw-tooth patterns both for AlxGa1-xAs along [01-1] and [011] trenches. (b) The comparison of the grating period before and after oxidation. The top schematic shows the grating geometry. The bottom is the bright field image of the oxide front. Trenches are [01-1] direction.

Fig. 4.
Fig. 4.

Schematics of the RCE photodetector and the epi-structure.

Fig. 5.
Fig. 5.

Photocurrent responsivity spectrum versus injection light wavelength.

Metrics