Abstract

White light interferometry has been adopted to measure distributed polarization coupling in high-birefringence waveguides. Since the coupling mode is weak compared to the exciting mode, the contrast ratio of the interferogram is very low. This will increase the difficulty of direct detection of the polarization coupling intensity. By rotating the angle between the polarization eigenmodes and the principal axis of the linear polarizer from 45° to 85°, the contrast ratio of the interferogram can be improved more than 10 times. As a result, the measurement sensitivity can be improved more than 100 times.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Libo Yuan, Limin Zhou, and Wei Jin, “Quasi-distributed strain sensing with white-light interferometry: a novel approach,” Opt. Lett. 25, 1074–1076 (2000)
    [Crossref]
  2. M. Shlyagin, A. Khomenko, and D. Tentori, “Remote measurement of mode-coupling coefficients in birefringent fiber,” Opt. Lett. 19, 913–915 (1994)
    [Crossref] [PubMed]
  3. Wencai Jing, Yimo Zhang, Ge Zhou, Feng Tang, and Haifeng Li, “Measurement accuracy improvement with PZT scanning for detection of DPC in Hi-Bi fibers,” Opt. Express 10, 685–690 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-685
    [Crossref] [PubMed]
  4. P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)
  5. J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
    [Crossref]
  6. Kazunori Suzuki, Hirokazu Kubota, Satoki Kawanishi, Masatoshi Tanaka, and Moriyuki Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676
    [Crossref] [PubMed]
  7. Tomasz R Wolinski and Wojtek J Bock, “Simultaneous twist and pressure effects in highly birefringent single-mode Bow-Tie fibers,” J. of Lightwave Technol. 11, 389–394 (1993)
    [Crossref]
  8. K Takada, J Noda, and K Okamoto, “Measurement of spatial distribution of mode coupling in birefringent polarization-maintaining fiber with new detection scheme,” Opt. Lett. 11, 680–682 (1986)
    [Crossref] [PubMed]
  9. Ju-Yi Lee and Der-Chin Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser-diode,” Opt. Commun. 198, 333–337 (2001)
    [Crossref]
  10. S C Rashleigh, W K Burns, R P Moeller, and R Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett. 7, 40–42 (1982)
    [Crossref] [PubMed]
  11. Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
    [Crossref]

2002 (1)

2001 (4)

J Tpia-Mercado, A V Khomenko, and A Garcia-Weidner, “Precision and sensitivity optimization for white-light interferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001)
[Crossref]

Kazunori Suzuki, Hirokazu Kubota, Satoki Kawanishi, Masatoshi Tanaka, and Moriyuki Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676
[Crossref] [PubMed]

Ju-Yi Lee and Der-Chin Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser-diode,” Opt. Commun. 198, 333–337 (2001)
[Crossref]

Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
[Crossref]

2000 (1)

1994 (1)

1993 (1)

Tomasz R Wolinski and Wojtek J Bock, “Simultaneous twist and pressure effects in highly birefringent single-mode Bow-Tie fibers,” J. of Lightwave Technol. 11, 389–394 (1993)
[Crossref]

1991 (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)

1986 (1)

1982 (1)

Bock, Wojtek J

Tomasz R Wolinski and Wojtek J Bock, “Simultaneous twist and pressure effects in highly birefringent single-mode Bow-Tie fibers,” J. of Lightwave Technol. 11, 389–394 (1993)
[Crossref]

Burns, W K

Fujita, Moriyuki

Garcia-Weidner, A

He, Zuyuan

Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
[Crossref]

Hotate, Kazuo

Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
[Crossref]

Jin, Wei

Jing, Wencai

Kawanishi, Satoki

Khomenko, A V

Khomenko, A.

Kubota, Hirokazu

Le Boudec, G

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)

Lee, Ju-Yi

Ju-Yi Lee and Der-Chin Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser-diode,” Opt. Commun. 198, 333–337 (2001)
[Crossref]

Lefevre, H C

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)

Li, Haifeng

Martin, P

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)

Moeller, R P

Noda, J

Okamoto, K

Rashleigh, S C

Shlyagin, M.

Song, Xueliang

Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
[Crossref]

Su, Der-Chin

Ju-Yi Lee and Der-Chin Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser-diode,” Opt. Commun. 198, 333–337 (2001)
[Crossref]

Suzuki, Kazunori

Takada, K

Tanaka, Masatoshi

Tang, Feng

Tentori, D.

Tpia-Mercado, J

Ulrich, R

Wolinski, Tomasz R

Tomasz R Wolinski and Wojtek J Bock, “Simultaneous twist and pressure effects in highly birefringent single-mode Bow-Tie fibers,” J. of Lightwave Technol. 11, 389–394 (1993)
[Crossref]

Yuan, Libo

Zhang, Yimo

Zhou, Ge

Zhou, Limin

IEEE Photonics Technol. Lett. (1)

Kazuo Hotate, Xueliang Song, and Zuyuan He, “Stress-location measurement along an optical fiber by synthesis of triangle-shaped optical coherence function,” IEEE Photonics Technol. Lett. 13, 233–235 (2001)
[Crossref]

J. Lightwave Technol. (1)

J. of Lightwave Technol. (1)

Tomasz R Wolinski and Wojtek J Bock, “Simultaneous twist and pressure effects in highly birefringent single-mode Bow-Tie fibers,” J. of Lightwave Technol. 11, 389–394 (1993)
[Crossref]

Opt. Commun. (1)

Ju-Yi Lee and Der-Chin Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser-diode,” Opt. Commun. 198, 333–337 (2001)
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (1)

P Martin, G Le Boudec, and H C Lefevre, “Test apparatus of distributed polarization coupling in fiber gyro coils using white light interferometry,” in Fiber Optic Gyros: 15th Anniversary Conference, Shaoul Ezekiel and Eric Udd, eds., Proc. SPIE 1585, pp. 173–179 (1991)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Structure of the white light interferometer

Fig. 2
Fig. 2

Relationship between the normalized minimum detectable h-parameter and the rotation angle

Fig. 3
Fig. 3

Relationship between the relative measurement error and the rotation angle

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E x 0 = A e ( t ) exp ( i φ 0 )
E y 0 = A c ( t ) exp ( i φ 0 ) ,
E x 1 = A e ( t ) exp { i ( φ 0 + k x l ) } = A e ( t ) exp { i ( φ 0 + k 0 n x l ) }
E y 1 = A c ( t ) exp { i ( φ 0 + k y l ) } = A c ( t ) exp { i ( φ 0 + k 0 n x l + k Δ n b l ) } ,
E xy 0 = A e ( t ) exp [ i ( φ 0 + Δ φ 1 + k x l ) ] cos α + A c ( t ) exp [ i ( φ 0 + Δ φ 1 + k y l ) ] sin α ,
E xy 1 = E xy 2
= 2 2 { A e ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k x l ) ] cos α + A c ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k y l ) ] sin α }
E xyr 1 = 1 2 { A e ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k x l + k 0 δ 0 + k 0 Δ s ) ] cos α
+ A c ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k y l + k 0 δ 0 + k 0 Δ s ) ] sin α } ,
E xyr 2 = 1 2 { A e ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k x l + k 0 δ 0 ) ] cos α
+ A c ( t ) exp [ i ( φ 0 + Δ φ 1 + Δ φ 2 + k y l + k 0 δ 0 ) ] sin α }
E int = E xyr 1 + E xyr 2 .
I tatal = R 0 E int · E int * = I 1 + I 2 + I 3 + I 4 + I 5 ,
I 1 = 1 4 R 0 [ A e 2 ( t ) + A c 2 ( t ) ] · 2 cos 2 α
I 2 = 1 4 R 0 A e ( t ) A c ( t ) cos ( k 0 Δ n b l k 0 Δ s ) sin ( 2 α )
I 3 = 1 4 R 0 [ A e 2 ( t ) + A c 2 ( t ) ] cos ( k 0 Δ s ) · 2 cos 2 α .
I 4 = 1 4 R 0 2 A e ( t ) A c ( t ) cos ( k 0 Δ n b l ) sin ( 2 α )
I 5 = 1 4 R 0 A e ( t ) A c ( t ) cos ( k 0 Δ n b l + k 0 Δ s ) sin ( 2 α )
I total I 1 + I 2 ,
h = I c I e = E y 0 · E y 0 * E x 0 · E x 0 * = A c 2 ( t ) A e 2 ( t ) ,
I 2 I 1 = A e ( t ) A c ( t ) cos ( k 0 Δ n b l k 0 Δ s ) sin ( 2 α ) A e 2 ( t ) + A c 2 ( t ) · 2 cos 2 α ,
h 1 2 f ( k 0 Δ n b l k 0 Δ s ) tan α
h ( l ) max l ( I 2 I 1 ) 2 cot 2 α , Δ n b l Δ s L c
R ( l ) = 2 I 2 , max I 1 + I 2 , max ,
2 h 1 / 2 ( l ) tan α
h min R min 2 4 cos 2 α .
Err = cot 2 ( α ) cot 2 ( α + Δ α ) cot 2 ( α + Δ α ) .

Metrics