Abstract

The performances and characteristics of a polymer-cholesteric-liquid-crystal reflector, used as an output coupler in a Nd-doped fiber laser, are presented. We show that a judicious combination of a linear polarizer and a quarter wave plate with the cholesteric coupler allows for a continuous scanning of the output-intensity from zero to a maximum value following the well-known Malus law. The results are shown to be contained in a simple Jones Matrix formalism. The LP-QW-PCLC combination is characterized by a reflection coefficient that can be freely adjusted from 0 to 1 by a simple rotation of the quarter-wave plate.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Do Il Chang and al., ???Short pulse generation in the mode-locked fibre laser using cholesteric liquid crystal,??? Opt. Commun. 162, 251-255 (1999).
    [CrossRef]
  2. Jae-Cheul Lee and Stephen D. Jacobs, ???Design and construction of 1064-nm liquid-crystal laser cavity end mirrors,??? J. Appl. Phys. 68, 6523-6525 (1990).
    [CrossRef]
  3. C. Li, J. Boyaval, M. Warenghem, and P. Carette, ???On the design of a Nd3+ doped silica fiber-laser using a cholesteric liquid crystal mirror,??? Eur. Phys. J. D 11, 449-456 (2000).
    [CrossRef]
  4. V. I. Kopp and al., ???Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,??? Opt. Lett. 23, 1707-1709 (1998).
    [CrossRef]
  5. M. Mitov, A. Boudet and P. Sopéna, ???From selective to wide-band light reflection: a simple thermal diffusion in a glassy cholesteric liquid crystal,??? Eur. Phys. J. B 8, 327-330 (1999).
    [CrossRef]
  6. A. Lavernhe, M. Mitov, ???How to broaden the light reflection band in cholesteric liquid crystals ? A new approach based on polymorphism,??? C. Binet and C. Bourgerette, Liq. Cryst. 28, 803-807 (2001).
  7. H. Hasebe, K. Takeuchi and H. Takatsu, ???Properties of novel UV-curable liquid crystals and their retardation films,??? J. of the SID 3/3, 139-143 (1995).
  8. C. Binet, M. Mitov, A. Boudet, M. Mauzac and P. Sopéna, ???PDLC-like patterns at the isotropic to cholesteric transition entrapped by in situ photopolymerization,??? Liq. Cryst. 26 1735-1741 (1999).
    [CrossRef]
  9. F.-H. Kreuzer, D. Andrejewski, W.Haas, ???Cyclic Siloxanes with Mesogenic Side Groups,??? N. Häberle, G. Riepl and P. Spes, Mol. Cryst. Liq. Cryst. 199, 345???378 (1991).
    [CrossRef]
  10. F. Sanchez, B. Meziane, T. Chartier, G. M. Stephan, and P. L. François, ???Output-coupling optimization of Nd-doped fiber lasers,??? Appl. Opt. 34, 7674-7679 (1995).
    [CrossRef]
  11. C. Elachi and C. Yeh, ???Stop bands for optical wave propagation in cholesteric liquid crystals,??? J. Opt. Soc. Am. 63, 840-842 (1973).
    [CrossRef]
  12. Kevin M. Flood and Dwight L. Jaggard, ???Band-gap structure for periodic chiral media,??? J. Opt. Soc. Am. A 13, 1395-1406 (1996).
    [CrossRef]
  13. R. C. Jones, ???A new calculus for the treatment of optical systems,??? J. Opt. Soc. Am. 31, 488-502 (1941).
    [CrossRef]

Appl. Opt. (1)

Eur. Phys. J. B (1)

M. Mitov, A. Boudet and P. Sopéna, ???From selective to wide-band light reflection: a simple thermal diffusion in a glassy cholesteric liquid crystal,??? Eur. Phys. J. B 8, 327-330 (1999).
[CrossRef]

Eur. Phys. J. D (1)

C. Li, J. Boyaval, M. Warenghem, and P. Carette, ???On the design of a Nd3+ doped silica fiber-laser using a cholesteric liquid crystal mirror,??? Eur. Phys. J. D 11, 449-456 (2000).
[CrossRef]

J. Appl. Phys. (1)

Jae-Cheul Lee and Stephen D. Jacobs, ???Design and construction of 1064-nm liquid-crystal laser cavity end mirrors,??? J. Appl. Phys. 68, 6523-6525 (1990).
[CrossRef]

J. of the SID (1)

H. Hasebe, K. Takeuchi and H. Takatsu, ???Properties of novel UV-curable liquid crystals and their retardation films,??? J. of the SID 3/3, 139-143 (1995).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Liq. Cryst. (2)

C. Binet, M. Mitov, A. Boudet, M. Mauzac and P. Sopéna, ???PDLC-like patterns at the isotropic to cholesteric transition entrapped by in situ photopolymerization,??? Liq. Cryst. 26 1735-1741 (1999).
[CrossRef]

A. Lavernhe, M. Mitov, ???How to broaden the light reflection band in cholesteric liquid crystals ? A new approach based on polymorphism,??? C. Binet and C. Bourgerette, Liq. Cryst. 28, 803-807 (2001).

Mol. Cryst. Liq. Cryst. (1)

F.-H. Kreuzer, D. Andrejewski, W.Haas, ???Cyclic Siloxanes with Mesogenic Side Groups,??? N. Häberle, G. Riepl and P. Spes, Mol. Cryst. Liq. Cryst. 199, 345???378 (1991).
[CrossRef]

Opt. Commun. (1)

Do Il Chang and al., ???Short pulse generation in the mode-locked fibre laser using cholesteric liquid crystal,??? Opt. Commun. 162, 251-255 (1999).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1
Figure 1

Experimental set-up. Pump: Titane Sapphire laser (λp=0.81μm ); M1 : coupling mirror (R ≅ 100% at 1.08μm, T ≅ 80% at λp ); MO : microscope objective: CLC: cholesteric liquid crystal mirror.

Figure 2
Figure 2

Laser output intensity versus pump input characteristics. Curve (a) was obtained without any ouput coupler, laser oscillation taking place between mirro M1 and the fiber end. Curve (b) was obtained both with a 0.5 reflectance dielectric mirror and the CLC coupler. This curve demonstrates that for linearly polarized light, the CLC mirror has a 0.5 reflectivity and 0.5 transmittance. The difference with a dielectric mirror is the circularly induced polarization of the transmitted and reflected light.

Figure 3
Figure 3

Selective transmission spectrum in the vicinity of 1.06 μm of the CLC mirror obtained with unpolarized light

Figure 4
Figure 4

a)Experimental set up for polarization resolved analysis. P: linear polarizer; λ/4 : quarter wave plate at 1.06μm; b) Extreme values of the laser output intensity obtained when the quarter-wave-plate axis are oriented at -45° (Imin) or +45° (Imax) with respect to the axis of the linear polarizer.

Figure 5
Figure 5

Laser output power as a function of the QWP orientation with respect to the linear polarizer

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 cos 2 ( θ )
n ( z ) = n ̅ + Δ n cos ( Kz ) _ Δ n sin ( Kz ) 0 Δ n sin ( Kz ) n Δ n cos ( Kz ) 0 0 0 n z
[ T R ] = 1 2 1 i i 1
[ T L ] = 1 2 1 i i 1
e = e R 1 i + e L 1 i
[ T R ] e = e L 1 i ,
[ T L ] e = e R 1 i ,
[ T R ] 1 i = 0 0 ,
[ T L ] 1 i = 0 0 ,
[ R ] 1 i = 1 i ,
[ R ] 1 i = 0 0 ,
e = e 0 cos ( φ ) i sin ( φ )
e out = e 0 [ 1 i i 1 ] cos ( φ ) i sin ( φ )
e out = ( cos ( φ ) + sin ( φ ) ) e 0 1 i
e out = e 0 cos ( θ ) 1 i
I out = e out e out * = I 0 cos 2 ( θ )
R = sin 2 ( θ )

Metrics