Abstract

The effect of neutron and gamma ray irradiations on the optical properties of proton exchanged Z-cut lithium niobate optical planar waveguides were investigated. The damage thresholds were found by optical characterization for waveguides exchanged either in pure or diluted proton source.

© 2002 Optical Society of America

Full Article  |  PDF Article
Related Articles
Independent control of index and profiles in proton-exchanged lithium niobate guides

M. De Micheli, M. Papuchon, J. Botineau, S. Neveu, P. Sibillot, and D. B. Ostrowsky
Opt. Lett. 8(2) 114-115 (1983)

Characterization of proton-exchanged waveguides in MgO:LiNbO3

M. Digonnet, M. Fejer, and R. Byer
Opt. Lett. 10(5) 235-237 (1985)

Fully planar proton-exchanged lithium niobate waveguides with grating taps

Hui Zhang, Ming Jun Li, S. Iraj Najafi, and Otto Schwelb
Appl. Opt. 33(16) 3391-3393 (1994)

References

  • View by:
  • |
  • |
  • |

  1. E. W. Taylor, “Advancement of radiation effects research in photonic technologies: application to space platforms and systems,” in Advancement of Photonics for Space, SPIE Critical Reviews CR-66, 58–82 (1997).
  2. H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
    [Crossref]
  3. T. S. Rose, D. Gunn, and G. C. Valley, “Gamma and Proton Radiation Effects in Erbium-Doped Fiber Amplifiers: Active and Passive Measurements,” J. Lightwave Technol. 19, 1918–1923 (2001).
    [Crossref]
  4. U. Roth, M. Trobs, T. Graf, J. E. Balmer, and H. P. Weber, “Proton and gamma radiation tests on nonlinear crystals,” Appl. Opt. 41, 464–469 (2002).
    [Crossref] [PubMed]
  5. http://lhc-new-homepage.web.cern.ch/lhc-new-homepage.
  6. V. M. N. Passaro, M. N. Armenise, D. Nesheva, I. Savatinova, and E. Y. Pun, “LiNbO3 Optical Waveguides Formed in a New Proton Source,” J. Lightwave Technol. 20, 71–77 (2002).
    [Crossref]

2002 (2)

2001 (1)

1997 (2)

E. W. Taylor, “Advancement of radiation effects research in photonic technologies: application to space platforms and systems,” in Advancement of Photonics for Space, SPIE Critical Reviews CR-66, 58–82 (1997).

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

Armenise, M. N.

Balmer, J. E.

Carson, R. F.

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

Graf, T.

Gunn, D.

Nesheva, D.

Passaro, V. M. N.

Paxton, A. H.

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

Pun, E. Y.

Rose, T. S.

Roth, U.

Savatinova, I.

Schone, H.

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

Taylor, E. W.

E. W. Taylor, “Advancement of radiation effects research in photonic technologies: application to space platforms and systems,” in Advancement of Photonics for Space, SPIE Critical Reviews CR-66, 58–82 (1997).

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

Trobs, M.

Valley, G. C.

Weber, H. P.

Appl. Opt. (1)

IEEE Photon. Tech. Lett. (1)

H. Schone, R. F. Carson, A. H. Paxton, and E. W. Taylor, “AlGaAs Vertical-Cavity Surface-Emitting Laser Responses to 4.5-MeV Proton Irradiation,” IEEE Photon. Tech. Lett. 9, 1552–1554 (1997).
[Crossref]

J. Lightwave Technol. (2)

SPIE Critical Reviews (1)

E. W. Taylor, “Advancement of radiation effects research in photonic technologies: application to space platforms and systems,” in Advancement of Photonics for Space, SPIE Critical Reviews CR-66, 58–82 (1997).

Other (1)

http://lhc-new-homepage.web.cern.ch/lhc-new-homepage.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

Index profiles of B5 sample as-exchanged, after 1 MeV neutron (2∙1011 n/cm2) and after 1 MeV gamma (50 rad) following neutron radiation.

Tables (4)

Tables Icon

Table I. Optical waveguide fabrication conditions.

Tables Icon

Table II. Radiation experimental parameters.

Tables Icon

Table III. Optical characterization results for samples as-exchanged, after neutron radiation and after gamma following neutron radiation.

Tables Icon

Table IV. Index profile reconstruction parameters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n s exp [ ( x / d ) α ]

Metrics