D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J Biomed Opt. 6, 418–426 (2001).
[Crossref]
[PubMed]
S. J. Kirkpatrick and M. J. Cipolla, “High resolution imaged laser speckle strain gauge for vascular applications,” J Biomed Opt. 5, 62–71 (2000).
[Crossref]
[PubMed]
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
S. J. Kirkpatrick and B. W. Brooks, “Micromechanical behavior of cortical bone as inferred from laser speckle data,” J. Biomed. Mater. Res. 39, 373–379 (1998).
[Crossref]
[PubMed]
S. J. Kirkpatrick and D. D. Duncan, “Noncontact microstrain measurements in orthodontic wires,” J. Biomed. Mater. Res. 29, 1437–1442 (1995).
[Crossref]
[PubMed]
D. D. Duncan, F. F. Mark, and L. W. Hunter, “A new speckle technique for noncontact measurement of small creep rates,” Opt. Eng. 31, 1583–1589 (1992).
[Crossref]
T. Takemori, K. Fujita, and I. Yamaguchi, “Resolution improvement in speckle displacement and strain sensor by correlation interpolation,” Laser Interferometry IV: Computer Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE 1553, 137–148 (1990).
A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[Crossref]
I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta. 28, 1359–1376 (1981).
[Crossref]
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
S. J. Kirkpatrick and B. W. Brooks, “Micromechanical behavior of cortical bone as inferred from laser speckle data,” J. Biomed. Mater. Res. 39, 373–379 (1998).
[Crossref]
[PubMed]
S. J. Kirkpatrick and M. J. Cipolla, “High resolution imaged laser speckle strain gauge for vascular applications,” J Biomed Opt. 5, 62–71 (2000).
[Crossref]
[PubMed]
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition (John Wiley & Sons, Inc. New York2001).
D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J Biomed Opt. 6, 418–426 (2001).
[Crossref]
[PubMed]
S. J. Kirkpatrick and D. D. Duncan, “Noncontact microstrain measurements in orthodontic wires,” J. Biomed. Mater. Res. 29, 1437–1442 (1995).
[Crossref]
[PubMed]
D. D. Duncan, S. J. Kirkpatrick, F. F. Mark, and L. W. Hunter, “Transform method of processing for speckle strain-rate measurements,” Appl. Opt. 33, 5177–5186 (1994).
[Crossref]
[PubMed]
D. D. Duncan, F. F. Mark, and L. W. Hunter, “A new speckle technique for noncontact measurement of small creep rates,” Opt. Eng. 31, 1583–1589 (1992).
[Crossref]
S. J. Kirkpatrick and D. D. Duncan, “Optical Assessment of Tissue Mechanics” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, Bellingham, WA. 2002).
A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[Crossref]
T. Takemori, K. Fujita, and I. Yamaguchi, “Resolution improvement in speckle displacement and strain sensor by correlation interpolation,” Laser Interferometry IV: Computer Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE 1553, 137–148 (1990).
C. F. Gerald, Applied Numerical Analysis (Addison-Wesley Publishing Company, Reading1973).
J. W. Goodman, “Statistical properties of laser speckles” in Topics in Applied Physics, Vol. 9: Laser Speckle and Related Phenomena, Second Enlarged Edition, J. C. Dainty ed. (Springer Verlag, New York1984).
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition (John Wiley & Sons, Inc. New York2001).
D. D. Duncan, S. J. Kirkpatrick, F. F. Mark, and L. W. Hunter, “Transform method of processing for speckle strain-rate measurements,” Appl. Opt. 33, 5177–5186 (1994).
[Crossref]
[PubMed]
D. D. Duncan, F. F. Mark, and L. W. Hunter, “A new speckle technique for noncontact measurement of small creep rates,” Opt. Eng. 31, 1583–1589 (1992).
[Crossref]
B. Jähne, Practical Handbook on Image Processing for Scientific Applications (CRC Press, Boca Raton1997).
D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J Biomed Opt. 6, 418–426 (2001).
[Crossref]
[PubMed]
S. J. Kirkpatrick and M. J. Cipolla, “High resolution imaged laser speckle strain gauge for vascular applications,” J Biomed Opt. 5, 62–71 (2000).
[Crossref]
[PubMed]
S. J. Kirkpatrick and B. W. Brooks, “Micromechanical behavior of cortical bone as inferred from laser speckle data,” J. Biomed. Mater. Res. 39, 373–379 (1998).
[Crossref]
[PubMed]
S. J. Kirkpatrick and D. D. Duncan, “Noncontact microstrain measurements in orthodontic wires,” J. Biomed. Mater. Res. 29, 1437–1442 (1995).
[Crossref]
[PubMed]
D. D. Duncan, S. J. Kirkpatrick, F. F. Mark, and L. W. Hunter, “Transform method of processing for speckle strain-rate measurements,” Appl. Opt. 33, 5177–5186 (1994).
[Crossref]
[PubMed]
S. J. Kirkpatrick and D. D. Duncan, “Optical Assessment of Tissue Mechanics” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, Bellingham, WA. 2002).
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
D. D. Duncan, S. J. Kirkpatrick, F. F. Mark, and L. W. Hunter, “Transform method of processing for speckle strain-rate measurements,” Appl. Opt. 33, 5177–5186 (1994).
[Crossref]
[PubMed]
D. D. Duncan, F. F. Mark, and L. W. Hunter, “A new speckle technique for noncontact measurement of small creep rates,” Opt. Eng. 31, 1583–1589 (1992).
[Crossref]
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[Crossref]
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition (John Wiley & Sons, Inc. New York2001).
T. Takemori, K. Fujita, and I. Yamaguchi, “Resolution improvement in speckle displacement and strain sensor by correlation interpolation,” Laser Interferometry IV: Computer Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE 1553, 137–148 (1990).
A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[Crossref]
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
T. Takemori, K. Fujita, and I. Yamaguchi, “Resolution improvement in speckle displacement and strain sensor by correlation interpolation,” Laser Interferometry IV: Computer Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE 1553, 137–148 (1990).
I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta. 28, 1359–1376 (1981).
[Crossref]
D. D. Duncan and S. J. Kirkpatrick, “Processing algorithms for tracking speckle shifts in optical elastography of biological tissues,” J Biomed Opt. 6, 418–426 (2001).
[Crossref]
[PubMed]
S. J. Kirkpatrick and M. J. Cipolla, “High resolution imaged laser speckle strain gauge for vascular applications,” J Biomed Opt. 5, 62–71 (2000).
[Crossref]
[PubMed]
S. J. Kirkpatrick and D. D. Duncan, “Noncontact microstrain measurements in orthodontic wires,” J. Biomed. Mater. Res. 29, 1437–1442 (1995).
[Crossref]
[PubMed]
S. J. Kirkpatrick and B. W. Brooks, “Micromechanical behavior of cortical bone as inferred from laser speckle data,” J. Biomed. Mater. Res. 39, 373–379 (1998).
[Crossref]
[PubMed]
A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165–179 (1989).
[Crossref]
I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction and image fields for small object deformation,” Opt. Acta. 28, 1359–1376 (1981).
[Crossref]
D. D. Duncan, F. F. Mark, and L. W. Hunter, “A new speckle technique for noncontact measurement of small creep rates,” Opt. Eng. 31, 1583–1589 (1992).
[Crossref]
T. Takemori, K. Fujita, and I. Yamaguchi, “Resolution improvement in speckle displacement and strain sensor by correlation interpolation,” Laser Interferometry IV: Computer Aided Interferometry, R. J. Pryputniewicz, ed., Proc. SPIE 1553, 137–148 (1990).
E. E. Konofagou, T. Varghese, J. Ophir, and S. K. Alam, “Power spectral strain estimators in elastography,” Ultrasound Med. Biol. 27, 1115–1129 (1999).
[Crossref]
S. J. Kirkpatrick and D. D. Duncan, “Optical Assessment of Tissue Mechanics” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE Press, Bellingham, WA. 2002).
J. W. Goodman, “Statistical properties of laser speckles” in Topics in Applied Physics, Vol. 9: Laser Speckle and Related Phenomena, Second Enlarged Edition, J. C. Dainty ed. (Springer Verlag, New York1984).
B. Jähne, Practical Handbook on Image Processing for Scientific Applications (CRC Press, Boca Raton1997).
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition (John Wiley & Sons, Inc. New York2001).
C. F. Gerald, Applied Numerical Analysis (Addison-Wesley Publishing Company, Reading1973).