Abstract

We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Paschotta, M. Collett, P. Kurz, K. Fielder, H.A. Bachor and J. Mlynek, �??Bright squeezed light from a singly resonant frequency doubler,�?? Phys. Rev. Lett. 72, 3807 (1994).
    [CrossRef] [PubMed]
  2. D.K. Serkland, M.M. Fejer, R.L. Byer and Y. Yamamoto, �??Squeezing in a quasi-phase-matched LiNbO3 waveguide,�?? Opt. Lett. 20, 1649 (1995).
    [CrossRef] [PubMed]
  3. G. S. Kanter, P. Kumar, R. V. Roussev, J. Kurz, K. R. Parameswaran, and M. M. Fejer, �??Squeezing in a LiNbO3 integrated optical waveguide circuit,�?? Opt. Express 10, 177-182 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-177">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-3-177</a>
    [CrossRef] [PubMed]
  4. D.J. Lovering, J.A. Levenson, P. Vidakovic, J. Webjorn and P.St.J. Rusell, �??Noiseless optical amplification in quasi-phase-matched bulk lithium niobate,�?? Opt. Lett. 21, 1439 (1996).
    [CrossRef] [PubMed]
  5. E.M. Daly and A.I. Ferguson, �??Parametric amplification and squeezing of a mode-locked pulse train: A comparison of MgO:LiNbO3 with bulk periodically poled LiNbO3,�?? Phys. Rev. A 62, 043807 (2000).
    [CrossRef]
  6. K.S. Zhang, T. Coudreau, M. Martinelli, A. Maitre and C. Fabre, �??Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in triply resonant cw periodically-poled lithium niobate optical parametric oscillator,�?? Phys. Rev. A 64, 033815 (2001).
    [CrossRef]
  7. M.J. Lawrence, R.L. Byer, M.M. Fejer, W. Bowen, P.K. Lam, and H.A. Bachor, �??Squeezed singly resonant second-harmonic generation in periodically poled lithium niobate,�?? J. Opt. Soc. Am. B 19, 1592 (2002).
    [CrossRef]
  8. M.E. Anderson, M. Beck, M.G. Raymer and J.D. Bierlein, �??Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides,�?? Opt. Lett. 20, 620 (1995).
    [CrossRef] [PubMed]
  9. C. Pedersen, �??Development of optical parametric oscillators,�?? Ph.D. thesis, (1994).
  10. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, �??Laser phase and frequency stabilization using an optical resonator,�?? Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  11. I. Juwiler, A. Arie, A. Skliar and G. Rosenman, �??Efficient quasi-phase-matched frequency doubling with phase compensation by a wedged crystal in a standing-wave external cavity,�?? Opt. Lett. 24, 1236 (1999).
    [CrossRef]
  12. H.P. Yuen and V.W.S. Chan, �??Noise in homodyne and heterodyne detection,�?? Opt. Lett. 8, 1 77 (1983).
    [CrossRef] [PubMed]
  13. C.W. Gardiner and M.J. Collett, �??Input and output in damped quantum systems: Quantum stochastic differential equations and master equation,�?? Phys. Rev. A 31, 3761(1 985).
    [CrossRef] [PubMed]
  14. Malcolm B. Gray, Daniel A. Shaddock, Charles C. Harb and H-A Bachor, �??Photodetector designs for low-noise, broadband, and high-power applications,�?? Rev. Sci. Ins. 69, 3755 (1998).
    [CrossRef]
  15. M.J. Collett and R.B. Levien, �??Two-photon-loss model of intracaity second-harmonic generation,�?? Phys. Rev. A 43, 5068 (1991).
    [CrossRef] [PubMed]
  16. This value is extracted from the following reference: A.G. White, M.S. Taubman, T.C. Ralph, P.K. Lam, D.E. McClelland and H.-A. Bachor, �??Experimental test of modular noise propagation theory for quantum optics,�?? Phys. Rev. A 54, 3400 (1996).
    [CrossRef] [PubMed]
  17. G.D. Boyd and D.A. Kleinman, �??Parametric interaction of focused gaussian light beams,�?? J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  18. Z.Y. Ou, S.F. Pereira, E.S. Polzik and H.J. Kimble, �??85% efficiency for cw frequency doubling from 1.08 µm to 0.54 µm,�?? Opt. Lett. 17, 640 (1992).
    [CrossRef] [PubMed]
  19. G. Breitenbach, T. Muller, S.F. Pereira, J.-Ph. Poizat, S.Schiller and J. Mlynek, �??Squeezed vacuum from a monolithic optical parametric oscillator,�?? J. Opt. Soc. Am B 12, 2304 (1995).
    [CrossRef]

Appl. Phys. B (1)

R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley and H. Ward, �??Laser phase and frequency stabilization using an optical resonator,�?? Appl. Phys. B 31, 97 (1983).
[CrossRef]

J. Appl. Phys. (1)

G.D. Boyd and D.A. Kleinman, �??Parametric interaction of focused gaussian light beams,�?? J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am B (1)

G. Breitenbach, T. Muller, S.F. Pereira, J.-Ph. Poizat, S.Schiller and J. Mlynek, �??Squeezed vacuum from a monolithic optical parametric oscillator,�?? J. Opt. Soc. Am B 12, 2304 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (5)

C.W. Gardiner and M.J. Collett, �??Input and output in damped quantum systems: Quantum stochastic differential equations and master equation,�?? Phys. Rev. A 31, 3761(1 985).
[CrossRef] [PubMed]

M.J. Collett and R.B. Levien, �??Two-photon-loss model of intracaity second-harmonic generation,�?? Phys. Rev. A 43, 5068 (1991).
[CrossRef] [PubMed]

This value is extracted from the following reference: A.G. White, M.S. Taubman, T.C. Ralph, P.K. Lam, D.E. McClelland and H.-A. Bachor, �??Experimental test of modular noise propagation theory for quantum optics,�?? Phys. Rev. A 54, 3400 (1996).
[CrossRef] [PubMed]

E.M. Daly and A.I. Ferguson, �??Parametric amplification and squeezing of a mode-locked pulse train: A comparison of MgO:LiNbO3 with bulk periodically poled LiNbO3,�?? Phys. Rev. A 62, 043807 (2000).
[CrossRef]

K.S. Zhang, T. Coudreau, M. Martinelli, A. Maitre and C. Fabre, �??Generation of bright squeezed light at 1.06 µm using cascaded nonlinearities in triply resonant cw periodically-poled lithium niobate optical parametric oscillator,�?? Phys. Rev. A 64, 033815 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

R. Paschotta, M. Collett, P. Kurz, K. Fielder, H.A. Bachor and J. Mlynek, �??Bright squeezed light from a singly resonant frequency doubler,�?? Phys. Rev. Lett. 72, 3807 (1994).
[CrossRef] [PubMed]

Rev. Sci. Ins. (1)

Malcolm B. Gray, Daniel A. Shaddock, Charles C. Harb and H-A Bachor, �??Photodetector designs for low-noise, broadband, and high-power applications,�?? Rev. Sci. Ins. 69, 3755 (1998).
[CrossRef]

Other (1)

C. Pedersen, �??Development of optical parametric oscillators,�?? Ph.D. thesis, (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

A schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Amplitude noise of our Nd:YAG laser as a function of frequency. Trace a is the noise power spectrum of the laser field before it enters the mode-cleaner, trace b is the noise spectrum of the mode-cleaner output field and trace c is the quantum noise limit. The dip at low frequencies is caused by the notch filter in our detectors while the modulation at 19.5 MHz is for locking the cavity. RBW=300kHz, VBW=1kHz.

Fig. 3.
Fig. 3.

Spectra of the amplitude noise for the squeezed second harmonic field and for the vacuum field. The latter defines the QNL. Spectra are obtained with RBW=3MHz and VBW=1kHz.

Fig. 4.
Fig. 4.

Amplitude noise power and QNL is observed at 10MHz in zero span mode with RBW=300 kHz and VBW=300 Hz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V ( Ω ) = 1 2 P c 2 Γ nl 2 ( 1 2 ( T + L ) + 3 2 P c Γ nl ) 2 + ( Ω τ ) 2

Metrics