Abstract

We investigate the electro-optical properties of polymer stabilized nematic liquid crystals produced by in situ photopolymerization technique using Gaussian laser beam. The distribution of refractive index in such structure under the action of a homogeneous electric field reveals a non-homogeneous lens-like character, approximately reproducing the intensity transverse distribution in the photopolymerizing beam.

© 2002 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Kowel, D. S. Cleverly, and P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [Crossref] [PubMed]
  2. T. Nose and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
    [Crossref]
  3. T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
    [Crossref]
  4. N. A. Riza and M. C. Dejule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [Crossref] [PubMed]
  5. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [Crossref]
  6. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimisation of spherical modal liquid crystal lenses,” Opt. Express 4, 344–352 (1999), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344.
    [Crossref] [PubMed]
  7. L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [Crossref]
  8. T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997).
    [Crossref] [PubMed]
  9. S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
    [Crossref]
  10. G. P. Crawford and S. Zumer, eds., Liquid Crystals in Complex Geometries (Taylor&Francis, London, 1996).
  11. R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).
  12. R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E. 51, 5824–5831 (1995).
    [Crossref]
  13. R. A. M. Hikmet and H. L. P. Poels, “An investigation of anisotropic gels for switchable recordings,” Liq. Cryst. 27, 17–25 (2000).
    [Crossref]
  14. T. Galstian and A. Tork, “Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum”, U.S. patent 6,398,981 (June 4, 2002).
  15. H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).
  16. D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
    [Crossref]

2002 (1)

T. Galstian and A. Tork, “Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum”, U.S. patent 6,398,981 (June 4, 2002).

2001 (1)

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

2000 (2)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

R. A. M. Hikmet and H. L. P. Poels, “An investigation of anisotropic gels for switchable recordings,” Liq. Cryst. 27, 17–25 (2000).
[Crossref]

1999 (1)

1998 (2)

A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
[Crossref]

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
[Crossref]

1997 (1)

1995 (1)

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E. 51, 5824–5831 (1995).
[Crossref]

1994 (1)

1992 (2)

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
[Crossref]

1991 (1)

T. Nose and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[Crossref]

1984 (1)

1972 (1)

H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).

Alaverdyan, R. B.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

Arakelyan, S. M.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

Boots, H. M. J.

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E. 51, 5824–5831 (1995).
[Crossref]

Bos, P. J.

Chien, L.-C.

Chilingaryan, Yu. S.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

Cleverly, D. S.

Commander, L. G.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Day, S. E.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Dejule, M. C.

Drnoyan, V. E.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

Francescangeli, O.

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

Galstian, T.

T. Galstian and A. Tork, “Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum”, U.S. patent 6,398,981 (June 4, 2002).

Gruler, H.

H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).

Guralnik, I. R.

Hikmet, R. A. M.

R. A. M. Hikmet and H. L. P. Poels, “An investigation of anisotropic gels for switchable recordings,” Liq. Cryst. 27, 17–25 (2000).
[Crossref]

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E. 51, 5824–5831 (1995).
[Crossref]

Kornreich, P. G.

Kowel, S. T.

Li, J.

Loktev, M. Yu.

Love, G. D.

Luccetta, D. E.

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

Lucchetti, L.

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

Masuda, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
[Crossref]

Meier, G.

H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).

Naumov, A. F.

Nose, T.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
[Crossref]

T. Nose and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[Crossref]

Poels, H. L. P.

R. A. M. Hikmet and H. L. P. Poels, “An investigation of anisotropic gels for switchable recordings,” Liq. Cryst. 27, 17–25 (2000).
[Crossref]

Riza, N. A.

Sato, S.

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
[Crossref]

T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997).
[Crossref] [PubMed]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
[Crossref]

T. Nose and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[Crossref]

Selviah, D. R.

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Sheffer, T. J.

H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).

Simoni, F.

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

Smirnova, T. N.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

Tork, A.

T. Galstian and A. Tork, “Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum”, U.S. patent 6,398,981 (June 4, 2002).

Vdovin, G.

Vladimirov, F. L.

Appl. Opt. (1)

Jpn. J. Appl. Phys. (3)

S. Masuda, T. Nose, and S. Sato, “Optical properties of a polymer-stabilized liquid crystal microlens,” Jpn. J. Appl. Phys. 37, L1251–1253 (1998).
[Crossref]

T. Nose and S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[Crossref]

T. Nose, S. Masuda, and S. Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643–1946 (1992).
[Crossref]

Liq. Cryst. (1)

R. A. M. Hikmet and H. L. P. Poels, “An investigation of anisotropic gels for switchable recordings,” Liq. Cryst. 27, 17–25 (2000).
[Crossref]

Liq.Cryst. (1)

D. E. Luccetta, O. Francescangeli, L. Lucchetti, and F. Simoni, “Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,” Liq.Cryst. 28, 1793–1798 (2001).
[Crossref]

Opt. Commun. (1)

L. G. Commander, S. E. Day, and D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E. (1)

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E. 51, 5824–5831 (1995).
[Crossref]

Sov. Tech. Phys. Lett. (1)

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, and Yu. S. Chilingaryan, “Nonlinear optical effects and ‘frozen-in’ structures in liquid-crystal photopolymerizing compositions,” Sov. Tech. Phys. Lett. 18, 48–52 (1992).

U.S. patent (1)

T. Galstian and A. Tork, “Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum”, U.S. patent 6,398,981 (June 4, 2002).

Z.Naturforsch. (1)

H. Gruler, T. J. Sheffer, and G. Meier, “Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,” Z.Naturforsch. 27a, 966–976 (1972).

Other (1)

G. P. Crawford and S. Zumer, eds., Liquid Crystals in Complex Geometries (Taylor&Francis, London, 1996).

Supplementary Material (1)

» Media 1: AVI (662 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up. Dashed lines denote elements used in polymerization process only; solid lines denote those used during the electro-optical measurements.

Fig. 2.
Fig. 2.

Light transmission as a function of the probe beam position in the sample under different values of applied voltage U. (a) before polymerization; (b) after polymerization; (c) before and after polymerization for U=1.87 V. Thickness of the cell is 4μm.

Fig. 3.
Fig. 3.

Induced maximal phase difference δF in the cell with thickness of 4μm versus applied voltage.

Fig. 4.
Fig. 4.

Polymerised area of the sample viewed between crossed polarizers of microscope at different values of applied voltage. The initial optical axis of the cell is oriented at 45° with respect to the polarizers. Thickness of the cell is 5μm.

Fig. 5.
Fig. 5.

Field induced transformation in the optical image of the lens-like distributed polymer-stabilized liquid crystals. The voltage is increased from 0.5V to 2.65V and then is decreased to 0.5V again. The initial optical axis of the cell is oriented at 450 with respect to the crossed polarizers. Thickness of the cell is 5μm. [Media 1]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I max sin 2 ( φ / 2 ) .

Metrics