Abstract

We investigate the electro-optical properties of polymer stabilized nematic liquid crystals produced by in situ photopolymerization technique using Gaussian laser beam. The distribution of refractive index in such structure under the action of a homogeneous electric field reveals a non-homogeneous lens-like character, approximately reproducing the intensity transverse distribution in the photopolymerizing beam.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. S. T. Kowel, D. S. Cleverly, P. G. Kornreich, �??Focusing by electrical modulation of refraction in a liquid crystal cell,�?? Appl. Opt. 23, 278-289 (1984).
  2. T. Nose, S. Sato, �??Optical properties of a liquid crystal microlens with a symmetric electrode structure,�?? Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
    [CrossRef]
  3. T. Nose, S. Masuda, S. Sato, �??A liquid crystal microlens with hole-patterned electrodes on both substrates,�?? Jpn. J. Appl. Phys. 31, 1643-1946 (1992).
    [CrossRef]
  4. N. A. Riza, M. C. Dejule, �??Three-terminal adaptive nematic liquid-crystal lens device,�?? Opt. Lett. 19, 1013-1015 (1994).
  5. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, G. Vdovin, �??Liquid-crystal adaptive lenses with modal control,�?? Opt. Lett. 23, 992-994 (1998).
  6. A. F. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, �??Control optimisation of spherical modal liquid crystal lenses,�?? Opt. Express 4, 344-352 (1999), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344</a>.
  7. L. G. Commander, S. E. Day, D. R. Selviah, �??Variable focal length microlenses,�?? Opt. Commun. 177, 157-170 (2000).
    [CrossRef]
  8. T. Nose, S. Masuda, S. Sato, J. Li, L.-C. Chien, P. J. Bos, �??Effects of low polymer content in a liquidcrystal microlens,�?? Opt. Lett. 22, 351-353 (1997).
  9. S. Masuda, T. Nose, S. Sato, �??Optical properties of a polymer-stabilized liquid crystal microlens,�?? Jpn. J. Appl. Phys. 37, L1251-1253 (1998).
    [CrossRef]
  10. G. P. Crawford, S. Zumer, eds., Liquid Crystals in Complex Geometries (Taylor&Francis, London, 1996).
  11. R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, Yu. S. Chilingaryan, �??Nonlinear optical effects and 'frozen-in' structures in liquid-crystal photopolymerizing compositions,�?? Sov. Tech. Phys. Lett. 18, 48-52 (1992).
  12. R. A. M. Hikmet, H. M. J. Boots, �??Domain structure and switching behavior of anisotropic gels,�?? Phys. Rev. E 51, 5824-5831 (1995).
    [CrossRef]
  13. R. A. M. Hikmet, H. L. P. Poels, �??An investigation of anisotropic gels for switchable recordings,�?? Liq. Cryst. 27, 17-25 (2000).
    [CrossRef]
  14. T. Galstian, A. Tork, �??Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum,�?? U.S. patent 6,398,981 (June 4, 2002).
  15. H. Gruler, T. J. Sheffer, G. Meier, �??Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,�?? Z. Naturforsch. 27a, 966-976 (1972).
  16. D. E. Luccetta, O. Francescangeli, L. Lucchetti, F. Simoni, �??Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,�?? Liq. Cryst. 28, 1793-1798 (2001).

Appl. Opt.

Jpn. J. Appl. Phys.

T. Nose, S. Sato, �??Optical properties of a liquid crystal microlens with a symmetric electrode structure,�?? Jpn. J. Appl. Phys. 30, L2110-L2112 (1991).
[CrossRef]

T. Nose, S. Masuda, S. Sato, �??A liquid crystal microlens with hole-patterned electrodes on both substrates,�?? Jpn. J. Appl. Phys. 31, 1643-1946 (1992).
[CrossRef]

S. Masuda, T. Nose, S. Sato, �??Optical properties of a polymer-stabilized liquid crystal microlens,�?? Jpn. J. Appl. Phys. 37, L1251-1253 (1998).
[CrossRef]

Liq. Cryst.

R. A. M. Hikmet, H. L. P. Poels, �??An investigation of anisotropic gels for switchable recordings,�?? Liq. Cryst. 27, 17-25 (2000).
[CrossRef]

D. E. Luccetta, O. Francescangeli, L. Lucchetti, F. Simoni, �??Droplet-size distribution gradient induced by laser curing in polymer dispersed liquid crystals,�?? Liq. Cryst. 28, 1793-1798 (2001).

Opt. Commun.

L. G. Commander, S. E. Day, D. R. Selviah, �??Variable focal length microlenses,�?? Opt. Commun. 177, 157-170 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

R. A. M. Hikmet, H. M. J. Boots, �??Domain structure and switching behavior of anisotropic gels,�?? Phys. Rev. E 51, 5824-5831 (1995).
[CrossRef]

Sov. Tech. Phys. Lett.

R. B. Alaverdyan, V. E. Drnoyan, T. N. Smirnova, S. M. Arakelyan, Yu. S. Chilingaryan, �??Nonlinear optical effects and 'frozen-in' structures in liquid-crystal photopolymerizing compositions,�?? Sov. Tech. Phys. Lett. 18, 48-52 (1992).

Z. Naturforsch.

H. Gruler, T. J. Sheffer, G. Meier, �??Elastic constants of nematic liquid crystals. I. Theory of the normal deformation,�?? Z. Naturforsch. 27a, 966-976 (1972).

Other

T. Galstian, A. Tork, �??Photopolymerizable composition sensitive to light in a green to infrared region of the optical spectrum,�?? U.S. patent 6,398,981 (June 4, 2002).

G. P. Crawford, S. Zumer, eds., Liquid Crystals in Complex Geometries (Taylor&Francis, London, 1996).

Supplementary Material (1)

» Media 1: AVI (662 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics